Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01177 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202130901177 | |
Published online | 07 October 2021 |
Mechanical properties of concrete reinforced with graded pva fibers
2 PG student, Civil Engineering Department, GRIET, Hyderabad, India,
1 Associate Professor, Civil Engineering Department, GRIET, Hyderabad, India,
* Corresponding author: tharunreddy79@gmail.com
Concrete is poor in tensile property due to its brittle nature. Improvement in the mechanical properties of concrete is carried by combining the rebars and fibers in concrete. Earlier research state that non-metallic fibres improve pre-crack performance and metallic fibers improve post crack performance. Short fibers resist the micro-cracks at an early stage and long fibers resist macro-cracks. The combination of short and long fibers makes the performance of concrete much effective. In this study, the investigation is done on non-metallic PVA fiber with the lengths of 6mm (Short fiber) and 12mm (Long fiber) by hybridization of fibers on 50MPa concrete. The investigation is done in two stages; in the first stage, the optimum dosage of fiber content and strength effectiveness of strengths is carried. Further, in the second stage the hybridization of fiber is done with the 30% SF + 70% LF, 50%SF + 50% LF, 70% SF + 30% LF for finding the optimum hybrid combination. Mechanical properties of concrete like flexural strength, split tensile strength, compressive strength is investigated. The results obtained by the hybridization of fibers are compared with the mono fiber performance and control mix. Improvement in strength parameters is observed in fiber hybridization. According to the fiber functionality, the hybrid combination of 30% SF + 70% LF showed desired results by improving the overall performance of concrete. More long fibers content improves the crack growth resistance than short fibers in concrete.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.