Issue |
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
|
|
---|---|---|
Article Number | 07023 | |
Number of page(s) | 9 | |
Section | Propulsion Systems for Sustainable Mobility | |
DOI | https://doi.org/10.1051/e3sconf/202131207023 | |
Published online | 22 October 2021 |
Thermal Management Opportunity on Lubricant Oil to Reduce Fuel Consumption and Emissions of a Light-Duty Diesel Engine
University of L’Aquila, Department of Industrial and Information Engineering and Economics, 67100, L’Aquila, Italy
* Corresponding author: davide.dibattista@univaq.it
The high viscosity of the lubricant oil in internal combustion engines at cold starts is responsible for poor friction reduction and inadequate thermal stabilization of metallic masses and represents a major bottleneck in the efforts to reduce specific fuel consumption and pollutant emissions. Consequently, the possibility of integrating techniques for proper thermal management of the lubricant oil on internal combustion engines is of utmost importance to both homologation and daily on-road operation. Main options for reducing the warm-up time for the engine lubricant are the upgrade of the engine cooling and lubricating circuits, dedicated heating, different flow management of the oil/coolant heat exchanger, a renewed design of the oil sump or a thermal storage section to increase the oil temperature in the early phases of the warm up. The paper presents a new opportunity, using a hot storage medium to heat up the oil in the early phase of a driving cycle. A certain quantity of hot water, so, is stored in a tank, which can be used to warm up the lubricating oil when the engine is started up. The heating of this service water can be done by using exhaust gas heat, which is always wasted in the atmosphere. The activity is realized on an IVECO 3.0 L light-duty diesel engine, during a transient cycle (NEDC) on a dynamometric test bench. The benefits in terms of both fuel consumption and CO2 emissions reduction. The characterization of the backpressure associated with an eventual additional heat exchangers and the more complex layout of the oil circuit is assessed, as well as the transient effects produced by the faster oil warm-up and oil-coolant interaction on the engine thermal stabilization.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.