Issue |
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 5 | |
Section | Energy | |
DOI | https://doi.org/10.1051/e3sconf/202132102003 | |
Published online | 11 November 2021 |
Numerical Investigation on the Electrical Performance Optimization of a Tubular Thermoelectric Generator for Waste Heat Recovery
1
College of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology, Xi’an, 710021, China
2
School of Electronic Science & Engineering, Xi’an Jiaotong University, China
3
School of Mechanical & Control Engineering, Handong Global University, South Korea
In the waste heat utilization of automobile exhaust, the tubular thermoelectric generator (TTEG) has structural advantages compared with the flat-plate thermoelectric generator. A kind of TTEG that is composed of Bi0.5Sb1.5Te3 and Ni conical rings alternately attracts researchers' attention, and it generates electrical power based on the transverse thermoelectric effect. However, the electrical performance of such TTEG still needs to be improved for industrial utilization. In this study, the performance of TTEG was optimized through numerical simulation by changing its related structural parameters, including the tilt angle, the thickness of the conical ring, and the relative content of Ni. It is confirmed that the optimal tilt angle with maximum open-circuit voltage (OCV) is 27.3°; on this basis, it is found that a thinner thickness corresponds to a larger OCV; furthermore, when using a conical rings’ thickness of 0.75 mm and increasing the relative content of Ni in the Bi0.5Sb1.5Te3/Ni layered pair from 10% to 90%, the OCV decreases from 198mV to 105mV while the power density increases from 413W/m2 to 1350W/m2. It is believed that these findings can help to develop TTEGs with better electrical performance.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.