Issue |
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 9 | |
Section | Modeling and Simulation | |
DOI | https://doi.org/10.1051/e3sconf/202132103009 | |
Published online | 11 November 2021 |
Numerical study of shear-based hemolysis in aorta with left ventricular assistance device
1
Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, 75013 Paris, France
2
Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, 300134 Tianjin, China
* Corresponding author: smaine.kouidri@ensam.eu
Ventricular assistance devices (VADs) for heart failure treatment have been paid high attention among researchers for decades. However, the follow-up complications such as hemolysis and thrombosis require further optimization for this technique. Shear stress has been demonstrated to be significantly related to the hemolysis because of the rupture of red blood cells membrane with a leaking of hemoglobin in the plasma. This issue has already been investigated inside the pump of VAD, but estimations are still lacking regarding hemolysis generation in the aorta itself after VAD implantaion. Thus, the present study aims to evaluate the hemolysis in aorta through establishing the 3D numerical model of aorta with left ventricular assistance device (LVAD). Non-Newtonian Carreau model has been adopted. Comparisons of hemolysis evaluation have been made with two different mathematical models existing in literature. Moreover, the flow topology and hemodynamic variations have been studied. Different working conditions of LVAD have been considered corresponding to different heart failure severities. The results reveal a relatively low level of hemolysis risks in aorta. The thrombosis is more prone to occur in the case of severe heart failure condition.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.