Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 03009
Number of page(s) 9
Section Modeling and Simulation
DOI https://doi.org/10.1051/e3sconf/202132103009
Published online 11 November 2021
  1. M. Lescroart, J.-L. Hébert, F. Vincent, L. S. Nguyen, Pulsatility in ventricular assistance devices: A translational review focused on applied haemodynamics, Arch. Cardiovasc. Dis., 113(6-7): pp461-472, (2020) [Google Scholar]
  2. S. Lee, K. Fukamachi, L. Golding, N. Moazami, R. Starling, Left ventricular assist devices: From the bench to the clinic, Cardiol., 125: pp1-12, (2013) [Google Scholar]
  3. A. E. Hackmann, M. F. Masood, The patient guide to heart, lung, and esophageal surgery, The Society of Thoracic Surgeons. <https://ctsurgerypatients.org/adult-heart-disease/leftventricular-assist-device-lvad>, (2018) [Google Scholar]
  4. B. Voss, M. Krane, C. Jung, G. Brockmann, S. Braun, T. Gunther, R. Lange, R. Bauernschmitt, Cardiopulmonary bypass with physiological flow and pressure curves: pulse is unnecessary!, Eur. J. Cardiothorac. Surg., 37 (1): pp223–232, (2010) [Google Scholar]
  5. H. C. Groen, F. J. Gijsen, A. van der Lugt, M. S. Ferguson, T. S. Hatsukami, A. F. van derSteen, C. Yuan, J. J. Wentzel, Plaque rupture in the carotid artery is localized at the high shear stress region: a case report, Stroke, 38 (8): pp2379-2381, (2007) [Google Scholar]
  6. D. Tang, Z. Teng, G. Canton, C. Yang, M. Ferguson, X. Huang, J. Zheng, P. K. Woodard, C. Yuan, Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid-structure interaction study, Stroke, 40(10): pp3258-3, (2009a). [Google Scholar]
  7. J. Bonnemain, A. Malossi, I. Cristiano, M. Lesinigo, S. Deparis, A. Quarteroni, L. K. von Segesserb, Numerical simulation of left ventricular assist device implantations: comparing the ascending and the descending aorta cannulations, Med. Eng. Phys, 35(10): pp1465-75, (2013) [Google Scholar]
  8. B. Kar, R. M. Delgrado, O. H. Frazier, I. D. Gregoric, M. T. Harting, Y. Wadia, The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: implantation technique and computer flow modeling, Tex. Heart Inst. J., 32(3): pp294-8, (2005) [Google Scholar]
  9. K. D. May-Newman, B. K. Hillen, C. S. Sironda, W. Dembitsky, Effect of LVAD outflow conduit insertion angle on flow through the native aorta, J. Med. Eng. Technol., 28(3): pp105-9, (2004) [Google Scholar]
  10. A. Assmann, A. C. Benim, F. Gül, P. Lux, P. Akhyari, U. Boeken, F. Joos, P. Feindt, A. Lichtenberg, Pulsatile extracorporeal circulation during on-pump cardiac surgery enhances aortic wall shear stress, J. Biomech., 45(1): pp156-63, (2012) [Google Scholar]
  11. R. Mazzitelli, F. Boyle, E. Murphy, A. Renzulli, G. Fragomeni, Numerical prediction of the effect of aortic Left Ventricular Assist Device outflow-graft anastomosis location, Biocybern. Biomed. Eng., 36(2): pp327-343, (2016) [Google Scholar]
  12. Y. Wang, P. Shen, M. Zheng, P. Fu, L. Liu, J. Wang, L. Yuan, Influence of impeller speed patterns on hemodynamic characteristics and hemolysis of the blood pump, Appl. Sci., 9(21): pp 4689, (2019) [Google Scholar]
  13. N. B. Wood, S. J. Weston, P. J. Kilner, A. D. Gosman, D. N. Firmin, Combined MR imaging and CFD simulation of flow in the human descending aorta, J. Magn. Reson. Imaging, 13(5): pp 699-713, (2001) [Google Scholar]
  14. A. Callington, Q. Long, P. Mohite, A. Simon, T. K. Mittal, Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design, J. Thorac. Cardiovasc. Surg., 150(3): pp 696-704, (2015) [Google Scholar]
  15. X. Liu, Y. Fan, X Deng, F. Zhan. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J. Biomech., 44(6): pp1123-31, (2011) [Google Scholar]
  16. L. Morris, P. Delassus, A. Callanan, M. Walsh, F. Wallis, P Grace, T. McGloughlin. 3-D numerical simulation of blood flow through models of the human aorta. J. Biomech. Eng., 127(5): pp767-75, (2005) [Google Scholar]
  17. D. Garcia. Application du concept de perte de charge au diagnostic échocardiographique des sténoses aortiques, PhD thesis, (2003) [Google Scholar]
  18. W. A. Seed, N. B. Wood, Velocity Patterns in the Aorta, Cardiovasc. Res., 5: pp319-330, (1971) [Google Scholar]
  19. S. Middleman, Transport phenomena in the cardiovascular system, John Wiley and Sons, pp 5, (1972) [Google Scholar]
  20. B. C. Good, S. Deutsch, K. B. Manning, Continuous and pulsatile pediatric ventricular assist device hemodynamics with a viscoelastic blood model, Cardiovasc. Eng. Techn., 7(1): pp23-43, (2016) [Google Scholar]
  21. J. Song, S. Kouidri, F. Bakir. Numerical study on flow topology and hemodynamics in tortuous coronary artery with symmetrical and asymmetrical stenosis. Biocybern. Biomed. Eng., 41(1): pp142-155, (2021) [Google Scholar]
  22. P. A. Segalova, K. T. Venkateswara Rao, C. K. Zarins, C. A. Taylor, Computational modeling of shear-based hemolysis caused by renal obstruction, J. Biomech. Eng., 134(2): pp02100, (2012) [Google Scholar]
  23. M. Grigioni, U. Morbiducci, G. D’Avenio, G. D. Benedetto, C. D. Gaudio, A novel formulation for blood trauma prediction by a modified power-law mathematical model, Biomech. Model. Mechanobiol., 4: pp249-260, (2005) [Google Scholar]
  24. A. Garon, M. I. Farinas, Fast three-dimensional numerical hemolysis approximation, Artif. Organs 28: pp1016-1025, (2004) [Google Scholar]
  25. M. E. Taskin, K. H. Fraser, T. Zhang, C. Wu, B. P. Griffith, Z. J. Wu. Evaluation of Eulerian and Lagrangian models for hemolysis estimation, Am. Soc. Artif. Intern. Organs. 58(4): pp363-72, (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.