Issue |
E3S Web Conf.
Volume 323, 2021
V International Scientific and Technical Conference Modern Power Systems and Units (MPSU 2021)
|
|
---|---|---|
Article Number | 00013 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/e3sconf/202132300013 | |
Published online | 10 November 2021 |
Analysis of heating time and of temperature distributions for cylindrical geometry with the use of solution to the inverse problem
Institute of Thermal Engineering, Poznan University of Technology, 60-965 Poznan, Poland
* Corresponding author: magda.joachimiak@put.poznan.pl
Changes in heating time of a cylinder in the furnace for thermal and thermochemical treatments depending on the given heating rate is analysed in this paper. Temperature distributions from the axis to the boundary of the cylinder were determined based on solving non-stationary and non-linear inverse problem for the heat equation. Differences between the temperature on the boundary and along the cylinder axis for processes with the given heating rates from 5 to 10ᵒC/min were calculated. Twofold increase in the heating rate allowed the heating time to be reduced significantly. Increase in the heating rate had no impact on the difference between the temperature on the boundary and on the axis of the cylinder and on the quantity of energy being consumed by heating elements.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.