Issue |
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
|
|
---|---|---|
Article Number | 02017 | |
Number of page(s) | 5 | |
Section | Energy | |
DOI | https://doi.org/10.1051/e3sconf/202132102017 | |
Published online | 11 November 2021 |
Modelling of the cylindrical geometry cooling process based on the solution of the inverse problem
Institute of Thermal Engineering, Poznan University of Technology, 60-965 Poznan,, Poland
* Corresponding author: magda.joachimiak@put.poznan.pl
Processes of thermo-chemical treatment, such as nitriding, are used to create a surface layer of high mechanical values. When the nitriding process, often consisting of a multi-stage heating and soaking, is ended, elements being under treatment are cooled. The cooling rate depends on the massiveness and geometry of the given element. Too fast cooling can result in the formation of high temperature gradients, which leads to the element damage. This paper presents numerical analysis of a cylinder cooling. The non-linear, unsteady inverse problem for the heat equation was solved. Test examples were chosen based on experimental research conducted in the furnace for thermo-chemical treatment.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.