Issue |
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 5 | |
Section | Fuel Cell Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202233404001 | |
Published online | 10 January 2022 |
Composite chitosan and quaternary ammonium modified nanofibrillar cellulose anion exchange membranes for direct ethanol fuel cell applications
1 Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
2 Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia
* Corresponding author: selestina.gorgieva@um.si
Fuel cells are a promising technology for energy production, but their commercialization is hindered mainly due to high costs. Direct alkaline ethanol fuel cells (DAFC) are receiving increasing attention as they can utilize cheaper, non-precious metal catalysts. A vital component of a DAFC is the anion exchange membrane (AEM). Currently, the commercially available AEMs don’t possess satisfactory properties. This indicates a need for the development of new highly efficient, environmentally friendly, and economically viable AEMs. Synthesis of synthetic polymer AEMs is usually complex and time-consuming, as well as environmentally unfriendly. Therefore, it is highly desired that the membrane material is bio-renewable, non-toxic and environmentally benign. In this work, a series of biopolymer membranes were designed by a simple, cost-effective, dispersion-casting procedure, fully complying with green-chemistry principles. Design of experiments was used as a methodology for identifying optimal combinations of influencing factors and their relations within selected responses. The obtained chitosan-Mg(OH)2 composite membranes containing modified nanofibrillar cellulose (CNF) fillers with quaternary ammonium groups were investigated for their mechanical properties, swelling ratio, ethanol permeability and ion exchange properties. Obtained data suggest the applicability of newly prepared, biopolymeric composites as eco-friendly AEMs in DAFC technologies.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.