Issue |
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
|
|
---|---|---|
Article Number | 05002 | |
Number of page(s) | 8 | |
Section | Power Generation | |
DOI | https://doi.org/10.1051/e3sconf/202233405002 | |
Published online | 10 January 2022 |
Experimental characterization of a PEM fuel cell for marine power generation
1 Merchant Ship Division, Fincantieri S.p.A., Trieste, Italy
2 Department of Engineering and Architecture, University of Trieste, Trieste, Italy
3 CEnergy, Trieste, Italy ;
This study is focused on the possible application of hydrogen-fed PEM fuel cells on board ships. For this purpose, a test plant including a 100 kW generator suitable for marine application and a power converter including a supercapacitor-based energy storage system has been designed, built and experimentally characterised. The plant design integrates standard industrial components suitable for marine applications that include the technologies with the highest degree of maturity currently available on the market. Fuel Cell generator and power converter have been specifically designed by manufacturers to fit the specific plant needs. The experimental characterisation of the plant has been focused on the evaluation of the efficiency of the single components and of the overall system. Results shows a PEM fuel cell efficiency of 48% (when all auxiliaries are included) and an overall plant efficiency, including power conditioning, of about 45%. From load variation response tests, the fuel cell response time was maximum 2 seconds without supercapacitors and increased up to 20 seconds with supercapacitors connected, reducing the stress on the fuel cell generator. Experimental results confirm that PEM fuel cells, when supported by a suitably sized energy storage system, represent a viable technical solution for zero-emission power generation on board ships.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.