Issue |
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
|
|
---|---|---|
Article Number | 04013 | |
Number of page(s) | 8 | |
Section | Fuel Cell Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202233404013 | |
Published online | 10 January 2022 |
High temperature fuel cells to reduce CO2 emission in the maritime sector
1 Ecospray Technologies s.r.l., Alzano Scrivia (AL), Italy
2 Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Genoa, Italy
* Corresponding author: barbara.bosio@unige.it
Recently the interest in the sustainability of the maritime sector has increased exponentially. The International Maritime Organization (IMO) set as objective the reduction of CO2 emissions by 2030 by a margin of 40% compared to 2008. Recent studies showed that, according to the ships and the emission mitigation method applied, only 15–25% of CO2 reduction is de facto needed. Fuel cells represent an answer to meet this regulation. We propose two different solutions: (i) produce with SOFCs instead of engines the minimum power necessary to cut 20% of the emissions, or (ii) reduce the engine power of about 10% balancing the power requirement using MCFCs with CO2 capture. Using Aspen Plus each solution was investigated. The analysis contemplated LNG steam reforming to produce the H2 necessary for cell operation and the separation and liquefaction of CO2. Two case studies were considered comparing existing passenger ships with engines working on HFO and on LNG respectively. Although both solutions showed potential for the reduction of CO2 emissions respecting the IMO regulations, the SOFC solution requires a major change in the design of the ship, while MCFCs are proposed as an urgent solution allowing ship retrofitting without demanding update.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.