Issue |
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
|
|
---|---|---|
Article Number | 08002 | |
Number of page(s) | 6 | |
Section | Microbial & Enzymatic Biolectrochemical Systems | |
DOI | https://doi.org/10.1051/e3sconf/202233408002 | |
Published online | 10 January 2022 |
Development of Flexible, Conductive and Biocompatible Chitosan-Based Miniaturized Bioelectrodes for Enzymatic Glucose Biofuel Cells
1 Instituto Tecnológico de la Energía (ITE), Avenida Juan de la Cierva 24, 46980 Paterna, Spain ;
2 Instituto de Tecnología Eléctrica, Universitat Politècnica de València, Camino de Vera s/n Edificio 6C, 46022 Valencia, Spain
* Corresponding authors: mireia.buaki@ite.es (M.B.-S.) and laura.garcia@ite.es (L.G.-C.); Tel.: +36-9-6136-6670.
The need for new clean energy sources for portable devices in biomedical, agro-food industry and environmental related sectors boosts scientists towards the development of new strategies for energy harvesting for their application in biodevices development. In this sense, enzymatic biofuel cells (BFCs) have gained much attention in the last years. This work faces the challenge of develop new generation of BFCs able to be adapted to remote and personal monitoring devices within the framework of wearable technologies. To this aim, one of the main challenges consists of the development of conductive and biocompatible electrodes, which constitute a challenge itself due to the non-conductive capabilities of most of the biocompatible supports. Additionally, bioelectrodes may achieve good mechanical properties and resilience in order to be suitable for the envisioned application, which involves exposure to deformation during long-term use. Furthermore, it is desirable that the systems developed are versatile enough to be adapted to miniaturized supports for new personal wearable devices development. In the present work, self-standing chitosan-carbon black membranes have been synthesized and modified with suitable enzymes for the assembly of an enzymatic glucose BFC. The membranes have been adapted to be integrated in miniaturized interdigitated gold electrodes as the step forward to miniaturized systems, modified with enzymes and metallic particles clusters and tested for energy harvesting from glucose solutions. The miniaturized system produces a power density of 0.64 µW/cm2 that is enhanced to 2.75 µW/cm2 in the presence of the metallic clusters, which constitute a 76% incensement. Such preliminary demonstrations highlight the good response of metals in bioelectrode configuration. However, energy harvesting real application of the developed miniaturized electrodes need still improvements but pave the way for the use of BFC as an energy source in wearable technologies due to their good mechanical, electrical and biocompatible properties.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.