Issue |
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
|
|
---|---|---|
Article Number | 08001 | |
Number of page(s) | 6 | |
Section | Microbial & Enzymatic Biolectrochemical Systems | |
DOI | https://doi.org/10.1051/e3sconf/202233408001 | |
Published online | 10 January 2022 |
Bioelectricity production of PMFC using Lobelia Queen Cardinalis in individual and shared soil configurations
Laboratoire Ampère (CNRS), Université Claude Bernard Lyon 1, Insa Lyon, Ecole Centrale de Lyon, 36 avenue Guy de Collongue - 69134 Ecully
* Corresponding author: gregory.bataillou@ec-lyon.fr
Plant Microbial Fuel Cell (PMFC) creates electricity from oxidation of root exudates by microbia anaerobic digestion, and reduction of dioxygen to water. In this study, Lobelia Queen Cardinalis was used as a plant model to investigate the impact of ionic connection between stacked Plant microbial fuel cell (shared soil). 10mm thickness carbon felt woven with stainless steel wire was used for both anode and cathode, and soil was a mix of potting soil and ground from pond banks (30\%-70\% weight, respectively). Independent performances did not show any difference between individual and shared soil PMFCs. Stacking independent PMFC in series sums both open circuit potential (OCP) and internal resistance, while stacking in parallel sums current, keeping open circuit potential to the mean of the OCPs. Although series stacking seems to output best performances, this configuration may cause voltage reversal in one PMFC when current is strong, leading to biofilm damage, so stacking in parallel is recommended.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.