Issue |
E3S Web Conf.
Volume 349, 2022
10th International Conference on Life Cycle Management (LCM 2021)
|
|
---|---|---|
Article Number | 07004 | |
Number of page(s) | 5 | |
Section | Application and Transfer to Business | |
DOI | https://doi.org/10.1051/e3sconf/202234907004 | |
Published online | 20 May 2022 |
Sustainable transition of the primary steel production: Carbon footprint studies of hot-rolled coil according to ISO 14067
1
Institute of Sustainability in Civil Engineering, RWTH Aachen University, Aachen, Germany
2
thyssenkrupp Steel Europe AG, Duisburg, Germany
* Corresponding author: julian.suer@inab.rwth-aachen.de
A shift away from traditional carbon-based towards a hydrogen-based steel production has to be stepwise so that technological challenges can be solved simultaneously to various other challenges like the evolution of green markets, political framework as well as the creation of hydrogen supply.
First bridge technologies towards hydrogen-based steelmaking are crucial to generate a stable demand for hydrogen so that hydrogen supply can follow. Injection of hydrogen into existing blast furnaces is a prominent example to reduce greenhouse-gas emissions without the ambition to reach complete carbon neutrality.
A subsequent next step on the way towards climate neutrality are modern Direct reduction units. This technology is able to reduce Iron oxides by natural gas and hydrogen, respectively. Within the existing plants Direct reduction units can be incorporated in various ways over time, thus offering a gradual and in the end complete transition to hydrogen and electricity based production.
Since LCA studies provide crucial input for political and market-economy decision-making, the LCA community is of great importance for giving direction of transformation processes. Like other industries, the steel industry needs an allocation approach for greenhouse gas emission savings to evolve green markets, of which the methodology shall be discussed within the life cycle community.
The current study presents carbon footprint assessments (ISO 14067) of hot-rolled coil for different future production scenarios. The following production routes are investigated:
- Conventional blast furnace – basic oxygen furnace route
- Injection of H2 into a blast furnace
- Input of H2-based direct reduced iron (DRI) into a blast furnace
- H2-based direct reduction combined with electrically melting from renewable energy.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.