Issue |
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 4 | |
Section | Air Distribution and Ventilation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202235601003 | |
Published online | 31 August 2022 |
Energy-efficient retrofitting with incomplete building information: a data-driven approach
1 Dept of Applied Physics Electronics, Umeå University, 901 87 Sweden
2 Umeå Municipality, Sweden
* Corresponding author: kailun.feng@umu.se
The high-performance insulations and energy-efficient HVAC have been widely employed as energy-efficient retrofitting for building renovation. Building performance simulation (BPS) based on physical models is a popular method to estimate expected energy savings for building retrofitting. However, many buildings, especially the older building constructed several decades ago, do not have full access to complete information for a BPS method. To address this challenge, this paper proposes a data-driven approach to support the decision-making of building retrofitting under incomplete information. The data-driven approach is constructed by integrating backpropagation neural networks (BRBNN), fuzzy C-means clustering (FCM), principal component analysis (PCA), and trimmed scores regression (TSR). It is motivated by the available big data sources from real-life building performance datasets to directly model the retrofitting performances without generally missing information, and simultaneously impute the case-specific incomplete information. This empirical study is conducted on real-life buildings in Sweden. The result indicates that the approach can model the performance ranges of energy-efficient retrofitting for family houses with more than 90% confidence. The developed approach provides a tool to predict the performance of individual buildings from different retrofitting measures, enabling supportive decision-making for building owners with inaccessible complete building information, to compare alternative retrofitting measures.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.