Issue |
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 4 | |
Section | Underground Environment and Specialized Application | |
DOI | https://doi.org/10.1051/e3sconf/202235602010 | |
Published online | 31 August 2022 |
Reduced-scale experimental and numerical investigation on the energy and smoke control performance of natural ventilation systems in a high-rise atrium
1 School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang Road, Qingdao, China
2 Département de génie civil et de génie du bâtiment, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Canada
* Corresponding author: Dahai.Qi@usherbrooke.ca
Natural ventilation (NV) is an effective energy-saving strategy to remove the excessive heat in high-rise atria. The traditional NV system in high-rise atria has inlet openings at the bottom and outlet openings at the top. However, this traditional system may bring fire safety concerns due to the rapid spread of smoke during an atrium fire. To remove the fire safety concern, a new NV system was proposed in this study. This new system applies a segmentation slab to divide the high-rise atrium into upper and lower parts, which can limit the smoke movement. A ventilation shaft is installed to maintain the NV rate and extract smoke. To investigate the energy and smoke control performance of the new and traditional NV systems, a 1:20 small-scale experimental model and CFD numerical model were built. The results indicate that the new NV system with the shaft and segmentation can remove more heat than the traditional NV system. Furthermore, the new NV system can simplify the mechanical smoke exhaust system and improve the smoke control performance, e.g., requires a lower volumetric flow rate and maintains a thinner smoke layer.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.