Issue |
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
|
|
---|---|---|
Article Number | 02017 | |
Number of page(s) | 4 | |
Section | Underground Environment and Specialized Application | |
DOI | https://doi.org/10.1051/e3sconf/202235602017 | |
Published online | 31 August 2022 |
Parametric optimization of a novel air supply device used in tunnel fire
1 School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, 710055 Xi’an, China.
2 Yellow River Engineering Consulting Company Limited, 450003 Zhengzhou, China.
* Corresponding author: liangui@xauat.edu.cn
Tunnel widely exists in highway, subway and other underground buildings. Due to the structural limitations, the direction of evacuation is consistent with the main flow direction of smoke in the tunnel. For the design of smoke exhaust system, traditional methods aim at reducing the overall smoke concentration in the whole tunnel. However, when fire hazard occurs, rapid personnel escape requires higher visibility. In this paper, a novel air supply device designed for smoke-insulation passageway establishment and ventilation in tunnel fire is introduced. Wall-attached jet and orifice plate jet are combined in this device, which enables passageway to isolate smoke intrusion. In this study, an approach has been devised combining Response Surface Method (RSM) with numerical simulations as well as visualization experiment to get better performance of the device. Parametric optimization was conducted for the three influencing variables, i.e., the air supply volume, opening rate of orifice plate, and width of wall-attached jet. Analysis of variance (ANOVA) indicates that all the three factors are significant. Moreover, the optimal combination can be obtained within the admissible range of the three factors through response optimization. A regression equation is developed to predict the effect of the novel air supply device for any input values of the three influencing variables.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.