Issue |
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
|
|
---|---|---|
Article Number | 03062 | |
Number of page(s) | 4 | |
Section | Thermal Comfort and Natural Ventilation | |
DOI | https://doi.org/10.1051/e3sconf/202235603062 | |
Published online | 31 August 2022 |
Review on buoyancy-driven natural ventilation in an enclosure with various types of heat sources
1 Architecture Research Center of Vanke Co., Ltd, Shenzhen, Guangdong, China
2 School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, PR China
* Corresponding author: yangcq@xauat.edu.cn
This paper reviews indoor heat convection and buoyancy-driven natural ventilation in enclosed space with heat sources in different forms such as point, line, plane, volume or combination of them. The indoor thermal flow is driven by these heat sources and accumulated in the enclosure. Thermal plume evolves based on its dynamic law above heat sources and is conversely affected by the thermal environment and geometric structure. Therefore, the dynamic of thermal-driven flows and the restriction by the thermal environment and geometric framework are both of interest in the field of indoor heat convection and buoyancy-driven natural ventilation. Based on this fact, the indoor thermal convection can be divided into two basic components which are buoyant plume above the heat source and indoor thermal stratification flow. Research and analysis on these laws and restriction are of significance in not only the advances in building thermal environment technology but also further cognition and effective solutions for current engineering practice.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.