Issue |
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
|
|
---|---|---|
Article Number | 04017 | |
Number of page(s) | 4 | |
Section | Airflow Visualization, Measurement and Simulation | |
DOI | https://doi.org/10.1051/e3sconf/202235604017 | |
Published online | 31 August 2022 |
Evaluation of fast fluid dynamics with different solving schemes on scalar transport equation for predicting indoor contaminant concentration
School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, PR China
* Corresponding author: whd@usst.edu.cn
Predicting the transport of indoor pollution can assist designer to optimize ventilation mode of room. However, the high computational cost restricts the wide implementation of computational fluid dynamics (CFD) technique to predict indoor contaminant concentration. This study evaluated three potential numerical methods with scalar transport equation to resolve this dilemma which were combine fast fluid dynamics (FFD) and different solving schemes on scalar transport equation. To test the performance of three potential numerical methods, the conventional PISO algorithm was also employed to compare. A threedimensional ventilation case with experimental data of indoor CO2 concentration was adopted. The results show that the FFD with iterative scheme of scalar transport equation could predicting indoor CO2 concentration efficiently. The numerical method with semi-Lagrangian method and iterative scheme for predicting indoor air contaminant concentration could obtain satisfactory results at large time step size.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.