Issue |
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
|
|
---|---|---|
Article Number | 04016 | |
Number of page(s) | 4 | |
Section | Airflow Visualization, Measurement and Simulation | |
DOI | https://doi.org/10.1051/e3sconf/202235604016 | |
Published online | 31 August 2022 |
Numerical study on airflow performance and mechanical characteristics of centrifugal fan
1 School of Mechanic and Civil Engineering, China University of Mining and Technology, Xuzhou, China
2 School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, China
* Corresponding author: liuzhanzkd@cumt.edu.cn
As small fans are widely used to dissipate the heat of the electronic components, a series of special requirements are put forward on the airflow performance and stress characteristics. In the present study, the computational fluid dynamics (CFD) method is adopted to study the airflow characteristics of a specific type of fan, including the fluid pressure distribution, flow velocity field and fluid streamline distribution. The stress characteristics of the fan blades are systematically analyzed based on the fluid-solid coupling and thermal-solid coupling methods. The results show that with the rotation speed of 1400 rpm, the airflow velocity in the air duct is unevenly distributed, and some eddy disturbances form and occur in the flow field. To improve the operating efficiency of the fan, appropriate optimization schemes should be adopted to reduce the intensity and range of the eddy influence. When the inlet temperature is 20 °C, the stress on the impeller is mainly caused by centrifugal force and thermal load. As the inlet temperature increases, the effect of the thermal load becomes increasing. While for the centrifugal force, its influence on the impeller gradually disappears and completely disappears when the temperature reaches 50 °C.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.