Issue |
E3S Web of Conf.
Volume 365, 2023
IV International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2022)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 7 | |
Section | Road Construction, Building Structures and Materials | |
DOI | https://doi.org/10.1051/e3sconf/202336502004 | |
Published online | 30 January 2023 |
Study of the strength properties of modified concrete in tension
1 “Tashkent Institute of Irrigation and Agricultural Mechanization Engineers” National Research University, Tashkent, 100000, Uzbekistan
2 YEOJU Technical Institute in Tashkent, Tashkent, Uzbekistan
* Corresponding author: mr.bakhridin@mail.ru
The resistance of concrete to axial tension is much less than the resistance to compression and is largely determined by the adhesion of its components. The low tensile strength of ordinary concrete is explained by the heterogeneity of its structure and the discontinuity of concrete, which contributes to the development of stress concentration, especially under the action of tensile forces. To increase the tensile strength of concrete, it is necessary to eliminate, first of all, the heterogeneity of the structure of concrete - one of the main reasons for the large dispersion of the results of mechanical tests of this material, which affects the experimental determination of compressive strength. A significant difference between the compressive strength for ordinary concrete indicates a rather large spread of such values. This scatter is explained by the different influence of factors on tension and compression. For example, for ordinary concretes, it was found that with an increase in W/C , the tensile strength decreases, but to a lesser extent than the compressive strength. With an increase in the grade of concrete, the tensile strength increases. High-strength concretes, as a rule, prepared on concrete mixes with low W/C and on clean conditioned aggregates in the form of crushed stone and sand, have an increased density, therefore, they have less variation in strength readings both in compression and at stretching [1-4].
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.