Issue |
E3S Web Conf.
Volume 366, 2023
The 2021 International Symposium of the Society of Core Analysts (SCA 2021)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/202336601006 | |
Published online | 27 January 2023 |
In-situ characterization of capillary pressure during three-phase flow in porous media
Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, WY, USA.
* Corresponding author: azankoor@uwyo.edu
We characterize the pore-scale fluid distributions, phase connectivity, and local capillary pressures during three-phase flow in a water-wet Berea sandstone sample. In this investigation, we use a set of x-ray micro-tomography images acquired during three-phase core-flooding experiments conducted on a miniature core sample. We use several image analysis techniques to analyze the pore-scale fluid occupancy maps and use this information to develop several insights related to pore occupancy, oil and gas cluster distribution, and interfacial curvature during the gas injection process. The results of our investigation show that the large-, intermediate-, and small-sized pores are mostly occupied with gas, oil, and brine, respectively, which is consistent with the wetting order of the fluids (i.e., gas, oil, and brine are the nonwetting, intermediate wetting, and wetting phases, respectively). In addition, the connectivity analysis reveals that a significant amount of the gas phase was in the form of disconnected ganglia separated from the connected invading cluster. The presence of these trapped nonwetting phase clusters during the drainage process is presumably attributed to Roof snap-off and Haines jump events, as well as the anti-ripening phenomenon. Moreover, the average local oil-water capillary pressures are found to be greater than the gas-oil counterparts. This observation is then related to the relative location of the interfaces in the pore space and the threshold capillary pressures at which the various displacement events take place.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.