Issue |
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
|
|
---|---|---|
Article Number | 00062 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202346900062 | |
Published online | 20 December 2023 |
Input-output Feedback Linearization Control for SM-PMSM
Laboratory of Electrical Engineering and Maintenance, Higher School of Technology, Mohammed First University, Oujda, Morocco
* Corresponding author: a.senhaji@ump.ac.ma
This paper introduces a velocity control strategy for Surface-Mounted Permanent Magnet Synchronous Motors SM-PMSM using exact linearization and input-output decoupling techniques, which are rooted in the principles of differential geometry. The primary aim of this control approach is to establish a static state feedback mechanism and to convert the nonlinear PMSM model into a linear, decoupled, and controllable system. Initially, the state model that represents the PMSM dynamics within the d-q reference frame is defined. Subsequently, the process of designing the control through linearization and input-output decoupling is outlined. Lastly, the synthesis of the compensator is grounded in the pole placement method, aiming to drive the direct current towards zero and ensure optimal torque operation. Simulation outcomes conducted on Matlab/Simulink demonstrate the efficacy of the speed control strategy, which is facilitated by a straightforward algorithm for practical implementation. However, it is inadequate against variations in machine parameters and load torque disturbances.
Key words: speed control / SM PMSM / linearization / input-output decoupling / differential geometry / pole placement method
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.