Issue |
E3S Web of Conf.
Volume 382, 2023
8th International Conference on Unsaturated Soils (UNSAT 2023)
|
|
---|---|---|
Article Number | 06003 | |
Number of page(s) | 6 | |
Section | Understanding the Effect of Climate Change on the Environment and Infrastructure Through Unsaturated Soil Behavior | |
DOI | https://doi.org/10.1051/e3sconf/202338206003 | |
Published online | 24 April 2023 |
Irreversible effects of drying-wetting cycles on shrinkage and water retention of compacted London clay
Department of Engineering, Durham University, DH1 3LE Durham, UK
* Corresponding author: author@email.org
Long-linear assets, such as roads and railways, supported by earthworks are susceptible to deterioration caused by weather cycles, that translate into changes in soil hydro-mechanical properties. Failures in these earthworks are expected to become more common due to climate change as periods of drought and extreme rainfall events become more frequent. In the present study, the effect of the suction range of the moisture cycle on the soil-water retention curve (SWRC) and soil shrink-swell curve (SSC) of active London clay is investigated. Soil samples compacted at Proctor optimum conditions were subjected to drying-wetting cycles within a variable suction interval. A change in the SSC was observed when the water content reduced below a threshold that approximates to the shrinkage limit. A reduction in the ability of the soil to hold suction was observed with SWRCs becoming less steep, as the Primary Drying Line was steeper than subsequent drying phases (Scanning Drying Lines). Once the Scanning Drying Line intersects the Primary Drying Line, a yielding point is identified, and the soil loses further ability to hold suction. Irreversible deformations were observed associated with changes in the SWRC from drying-wetting cycles.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.