Issue |
E3S Web of Conf.
Volume 382, 2023
8th International Conference on Unsaturated Soils (UNSAT 2023)
|
|
---|---|---|
Article Number | 06010 | |
Number of page(s) | 6 | |
Section | Understanding the Effect of Climate Change on the Environment and Infrastructure Through Unsaturated Soil Behavior | |
DOI | https://doi.org/10.1051/e3sconf/202338206010 | |
Published online | 24 April 2023 |
The importance of permeability in modelling soil-atmosphere interaction
Imperial College London, Civil and Environmental Engineering Department, SW7 2AZ London, UK
* Corresponding author: aikaterini.tsiampousi@imperial.ac.uk
Soil-atmosphere interaction has been attracting increasing interest as the seasonal variation of pore water pressures (pwp) has been linked to a variety of geotechnical problems (e.g. slope stability and serviceability, foundation subsidence or swelling, desiccation cracking etc.) or has been identified as part of the solution of geotechnical problems (e.g. in sustainable urban drainage systems). Prediction of how the pwp will change within soils of low permeability under the combined effect of evapotranspiration and precipitation requires adequate knowledge of the soil permeability and how it varies spatially (e.g with depth) and temporally (e.g. with suction or degree of saturation, void ratio or due to the opening and closing of desiccation cracks). Nonetheless, in-situ measurements of permeability that satisfy both the spatial and temporal variation are difficult. In order to clarify the importance of variable permeability in predicting pwp variations under atmospheric loads, a series of one- and two-dimensional finite element analyses was performed, where the permeability model and the variation of permeability were parametrically studied. The results demonstrated that the variation of permeability, as well as the model employed in the analysis, e.g. allowing or not for desiccation cracking, influenced the values of suction calculated as well as the pwp profile with depth, highlighting the importance of estimating the spatial and temporal variation of permeability with some level of confidence.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.