Issue |
E3S Web of Conf.
Volume 389, 2023
Ural Environmental Science Forum “Sustainable Development of Industrial Region” (UESF-2023)
|
|
---|---|---|
Article Number | 05028 | |
Number of page(s) | 14 | |
Section | Sustainable Transport and Green Logistics | |
DOI | https://doi.org/10.1051/e3sconf/202338905028 | |
Published online | 31 May 2023 |
Closed biotechnological cycles for transport life support systems in deep space exploration
1 Transport and Telecommunication Institute, Lomonosov 1, Riga, LV-1019, Latvia
2 Center for Industrial Implementation of Applied Research Institute of the Russian Academy of Sciences BIOCENTER – SAS, Microdistrict B, house 34/83, Pushchino, Moscow Region, 142290, Russia
* Corresponding author: Kabashkin.I@tsi.lv
The integration of closed biotechnological cycles in life support systems (LSS) of autonomous transport systems (ATS) is a critical solution for deep space and planetary exploration. Prolonged autonomous existence of integral ecosystems depends on the degree of cyclic use of substances and the coefficient of closure of the ecosystem's mass-exchange processes. In missions lasting over two years, it becomes more beneficial to reproduce necessary substances inside the system instead of relying on external supplies. This research aims to explore the integration of closed biotechnological cycles, with a focus on the biotechnological cycles of methane and carbon dioxide, in the LSS ATS to achieve a high coefficient of closed circulation of substances and nature-like features. Two methods of ATS crew waste processing are described, and the potential of using methane for additional oxygen generation and food protein biosynthesis in the closed-loop cycle of substances transformation is investigated. Additionally, the possibility of applying methane biooxidation technology to existing biotechnological processes of feed and food protein production using methanotrophic bacteria in terrestrial conditions is discussed as a potential method for producing food animal protein in LSS ATS.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.