Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 02009 | |
Number of page(s) | 7 | |
Section | Ventilation and Airflow in Buildings | |
DOI | https://doi.org/10.1051/e3sconf/202339602009 | |
Published online | 16 June 2023 |
Energy performance of a hybrid DSF-inspired solar heating façade for office buildings
1 School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
2 College of Architecture and Design, University of Ulsan, Ulsan, Republic of Korea
* Corresponding author: yeonsookheo@korea.ac.kr
Double-skin façade (DSF) is a passive design strategy that enhances building energy performance and improves indoor thermal comfort. In addition, DSF has been proposed as a hybrid façade that uses a cavity to preheat fresh air supplied to an air-handling unit (AHU) to reduce energy consumption for heating. However, to the authors' knowledge, there is no study about the design of DSF tailored for the hybrid system application yet. Therefore, this study focuses on the usability of DSF as a hybrid system and evaluates the performance. First, parametric analysis of the hybrid solar heating façade geometry and thermal properties of glazing and absorber materials was performed to identify the most influencing design parameters. Second, the multivariate linear regression (MLR) model was developed to predict the performance of all parameters comprehensively affecting the hybrid solar heating façade. Finally, the performance of various design alternatives for hybrid solar heating façade that provide the minimum fresh air supply was evaluated through case studies. The analysis results confirmed that the hybrid solar heating façade can reduce the heating energy due to the preheating effect by up to 38%.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.