Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 03014 | |
Number of page(s) | 5 | |
Section | Energy Efficient and Healthy HVAC systems | |
DOI | https://doi.org/10.1051/e3sconf/202339603014 | |
Published online | 16 June 2023 |
A smart zero-energy building having bidirectional interaction with electricity/heating networks: An attempt to achieve a higher renewable penetration
1 Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
2 Norconsult AS, 1338 Sandvika, Norway
3 School of Business, Society and Engineering, Mälardalen University, Västerås, Sweden
The present research introduces an innovative zero-energy building complex equipped with a rule-based control approach for higher integration of renewable resources in the local energy network while bringing down energy costs. The idea centers on establishing several smart controllers to achieve a bidirectional interaction with the heating/electricity network for peak demand shaving and mitigate energy costs. The proposed system comprises Alkaline fuel cells integrated with a hydrogen storage tank driven by either a vanadium chloride cycle or an electrolyzer unit. The system also has an absorption chiller and smart thermal energy storage to supply the heating and cooling demands. TRNSYS-MATLAB developed code is applied to assess the system's indicators from techno-economic standpoints for a residential building complex in the Scandinavian climate. Also, the parametric investigation and time-dependent analysis are carried out to examine the impact of decision parameters and the ambient condition. According to the results, the solar system's physical appearance is very important since it significantly affects performance efficiency and total cost. The results further reveal that picking up the cells' current from 300 A to 500 A improves the performance efficiency by around 12% while lowering the total cost, illustrating the importance of optimization. The results highlight the importance of smart controllers by showing that over 70% of the year's net energy values are positive, indicating that the proposed system may meet demand and sell excess electricity+heating productions to regional networks. The results further demonstrate that since the net energy values are positive for the majority of days in the spring and summer, the system might operate more independently from the local energy networks on warmer days. Eventually, the higher share of solar in summer and wind energy in colder days for hydrogen production shows that the renewable resources combination results in a secure energy supply to obtain the highest independence from the local grid throughout the year.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.