Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 05011 | |
Number of page(s) | 8 | |
Section | Outdoor Thermal Environments and Impacts of Heat Island Phenomena | |
DOI | https://doi.org/10.1051/e3sconf/202339605011 | |
Published online | 16 June 2023 |
Improving outdoor thermal comfort of a kindergarten by optimizing its building shape with genetic algorithm
1 Department of Architecture, School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
2 Division of Sustainable Buildings, Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Brinellvägen 23, Stockholm, 100 44, Sweden
* Corresponding author: dayi_lai@sjtu.edu.cn
† Corresponding author: weiliu2@kth.se
Thermally comfortable mircoclimate is essential for creating high-quality outdoor spaces that attract citizens and boost city vitality. Previous design efforts to improve outdoor thermal comfort were usually conducted at large scales, such as city scale, neighborhood scale, urban block scale. Few researchers focused on the building scale. This study proposes an optimization framework based on genetic algorithm to determine the building shape, orientation, and location during early design stage that reduces the overall thermal stress in the target outdoor space. Solar radiation and wind fields were simulated to obtain the outdoor Universal Thermal Climate Index (UTCI) as the performance indicator. The simulations were validated against the experimental data. This investigation applied the proposed optimization framework to design the outdoor space for a kindergarten under the climate of Tianjin and Shanghai, respectively. The results showed that optimization reduced the overall thermal stress. The most favourable kindergarten forms were suggested through optimization. This study supplements the inverse design of outdoor thermal comfort at building scale and provides suggestions to create comfortable urban outdoor spaces.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.