Issue |
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
|
|
---|---|---|
Article Number | 04017 | |
Number of page(s) | 8 | |
Section | Computer Science | |
DOI | https://doi.org/10.1051/e3sconf/202339904017 | |
Published online | 12 July 2023 |
Semantic-Based Classification of Toxic Comments Using Ensemble Learning
1 Department of Computer Science and Engineering, R.M.K Engineering College, Tamil Nadu, India
2 Department of Electronics and Communication Engineering, K. Ramakrishnan College of Technology, Trichy - 621112, Tamil Nadu, India
* Corresponding author: atv.cse@rmkec.ac.in
A social media is rapidly expanding, and its anonymity feature completely supports free speech. Hate speech directed at anyone or any group because of their ethnicity, clan, religion, national or cultural their heritage, sex, disability, gender orientation, or other characteristics is a violation of their authority. Seriously encourages violence or hate crimes and causes social unrest by undermining peace, trustworthiness, and human rights, among other things. Identifying toxic remarks in social media conversation is a critical but difficult job. There are several difficulties in detecting toxic text remarks using a suitable and particular social media dataset and its high-performance, selected classifier. People nowadays share messages not only in person, but also in online settings such as social networking sites and online groups. As a result, all social media sites and apps, as well as all current communities in the digital world, require an identification and prevention system. Finding toxic social media remarks has proven critical for content screening. The identifying blocker in such a system would need to notice any bad online behavior and alert the prophylactic blocker to take appropriate action. The purpose of this research was to assess each text and find various kinds of toxicities such as profanity, threats, name-calling, and identity-based hatred. Jigsaw's designed Wikipedia remark collection is used for this.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.