Issue |
E3S Web of Conf.
Volume 405, 2023
2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023)
|
|
---|---|---|
Article Number | 03024 | |
Number of page(s) | 12 | |
Section | Structural Engineering & Concrete Technology | |
DOI | https://doi.org/10.1051/e3sconf/202340503024 | |
Published online | 26 July 2023 |
Corrosion of steel rebars embedded in One-part Alkali activated concrete mixes
Department of Civil Engineering, NITK, Surathkal, Mangaluru-575025.
To reduce CO2 emissions and turn a variety of industrial/agricultural wastes into valuable cementitious products, alkali-activated materials (AAM) are recognized as suitable substitutes for regular Portland cement (OPC). However, the concentrated aqueous alkali solutions used in conventional two-part alkali activated materials are highly corrosive, viscous, and are difficult to handle in direct field applications. As a result, the potential for developing so-called "just add water" type one-part AAMs, as compared to traditional two-part AAM, is being explored, particularly in cast-in-situ applications. In the present study on corrosion of reinforcing steel bars in fly ash-slag (FA-GGBS) based one-part AAC mixtures, three parameters—the total binder content, the relative proportions of GGBS and Fly-ash and the percentage of sodium oxide (Na2O) - are recognized as the key factors in determining the strength and durability performance (including corrosion of rebars embedded in it) of a given AAC mix. Accordingly, experiments were conducted on AAC mixes with three binder contents (440, 460, and 480 kg/m3), three Slag/FA ratios (80/20, 70/30 and 60/40, by volume) and three alternate Na2O percentages (5, 6, and 7%, by weight of total binder content). Prismatic cylindrical test specimens of reinforced geopolymer concrete were prepared and half-cell potential and corrosion rate measurements were made after 28-, 56-, and 90 days of continuous exposure to 3% of NaCl solution, to accelerate the corrosion process. Measured corrosion current density and corrosion rates using a Electro-chemical Corrosion Analyser have indicated that the AAC mixture having a total binder content 440 kg/m3, GGBS/FS ratio of 70/30 and 6% Na2O content, exhibits best corrosion resistance amongst the various mixes tested herein, as measured up to the end of 90-days.
Key words: Alkali activated Materials / rebar corrosion / Carbon emissions / electrochemical methods / Geopolymer concretes
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.