Open Access
Issue |
E3S Web of Conf.
Volume 405, 2023
2023 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2023)
|
|
---|---|---|
Article Number | 03024 | |
Number of page(s) | 12 | |
Section | Structural Engineering & Concrete Technology | |
DOI | https://doi.org/10.1051/e3sconf/202340503024 | |
Published online | 26 July 2023 |
- Andrew, R. M. Global CO2 emissions from cement production. Earth System Science Data, 10(1), 195–217 (2018). https://doi.org/10.5194/essd-10-195-2018 [CrossRef] [Google Scholar]
- Flatt, R. J., Roussel, N., & Cheeseman, C. R. Concrete: An eco material that needs to be improved. Journal of the European Ceramic Society, 32(11), 2787–2798 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.012 [CrossRef] [Google Scholar]
- Gartner, E., & Hirao, H. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete Research. Elsevier Ltd (2015, December 1). https://doi.org/10.1016/j.cemconres.2015.04.012 [Google Scholar]
- Provis, J. L., & van Deventer, J. S. J. Alkali Materials Activated State-of-the-Art Report. RILEM State-of-the-Art Reports (Vol. 13, pp. 1–388). Springer (2014). https://doi.org/10.1007/978-94-007-7672-2 [CrossRef] [Google Scholar]
- Turner, L. K., & Collins, F. G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130 (2013). https://doi.org/10.1016/j.conbuildmat.2013.01.023 [CrossRef] [Google Scholar]
- Provis, J. L. Alkali-activated materials. Cement and Concrete Research. Elsevier Ltd (2018, December 1). https://doi.org/10.1016/j.cemconres.2017.02.009 [Google Scholar]
- Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar (2018). https://doi.org/10.1016/j.jclepro.2018.03.202 [Google Scholar]
- Alrefaei, Y., & Dai, J. G. Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites. Construction and Building Materials, 184, 419–431 (2018). https://doi.org/10.1016/j.conbuildmat.2018.07.012 [CrossRef] [Google Scholar]
- Hajimohammadi, A., Ngo, T., & Kashani, A. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. Journal of Cleaner Production, 193, 593–603 (2018). https://doi.org/10.1016/j.jclepro.2018.05.086 [CrossRef] [Google Scholar]
- Gunasekara, C., Law, D., Bhuiyan, S., Setunge, S., & Ward, L. Chloride induced corrosion in different fly ash based geopolymer concretes. Construction and Building Materials, 200, 502–513 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.168 [CrossRef] [Google Scholar]
- Hong, S., Lai, W. L., & Helmerich, R. Experimental monitoring of chloride-induced reinforcement corrosion and chloride contamination in concrete with ground-penetrating radar. Structure and Infrastructure Engineering, 11(1), 15–26 (2015). https://doi.org/10.1080/15732479.2013.879321 [CrossRef] [Google Scholar]
- Asmara, Y. P., Siregar, J. P., Tezara, C., Nurlisa, W., & Jamiluddin, J. Long Term Corrosion Experiment of Steel Rebar in Fly Ash-Based Geopolymer Concrete in NaCl Solution. International Journal of Corrosion, 2016. https://doi.org/10.1155/2016/3853045 [Google Scholar]
- Tennakoon, C., Shayan, A., Sanjayan, J. G., & Xu, A. Chloride ingress and steel corrosion in geopolymer concrete based on long term tests. Materials and Design, 116, 287–299 (2017). https://doi.org/10.1016/j.matdes.2016.12.030 [CrossRef] [Google Scholar]
- Reddy, M. S., Dinakar, P., & Rao, B. H. Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete. Journal of Building Engineering, 20, 712–722 (2018). https://doi.org/10.1016/j.jobe.2018.09.010 [CrossRef] [Google Scholar]
- Bastidas, D. M., Fernández-Jiménez, A., Palomo, A., & González, J. A. A study on the passive state stability of steel embedded in activated fly ash mortars. Corrosion Science, 50(4), 1058–1065 (2008). https://doi.org/10.1016/j.corsci.2007.11.016 [CrossRef] [Google Scholar]
- Sufian Badar, M., Kupwade-Patil, K., Bernal, S. A., Provis, J. L., & Allouche, E. N. Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes. Construction and Building Materials, 61, 79–89 (2014). https://doi.org/10.1016/j.conbuildmat.2014.03.015 [CrossRef] [Google Scholar]
- Nematollahi, B., Sanjayan, J., & Shaikh, F. U. A. (2015). Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate. Ceramics International, 41(4), 5696–5704. https://doi.org/10.1016/j.ceramint.2014.12.154 [CrossRef] [Google Scholar]
- Prusty, J. K., & Pradhan, B. Effect of GGBS and chloride on compressive strength and corrosion performance of steel in fly ash-GGBS based geopolymer concrete. In Materials Today: Proceedings Vol. 32, pp (2020). Elsevier Ltd. https://doi.org/10.1016/j.matpr.2020.04.210 [Google Scholar]
- Corrosion rate monitoring and on-site. Science, 10(5), 315–328 (1996). https://doi.org/10.1016/0950-0618(95)00044-5 [Google Scholar]
- Kupwade-Patil, K., & Allouche, E. N. Examination of Chloride-Induced Corrosion in Reinforced Geopolymer Concretes. Journal of Materials in Civil Engineering, 25(10), 1465–1476. (2013) https://doi.org/10.1061/(asce)mt.1943-5533.0000672 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.