Issue |
E3S Web of Conf.
Volume 406, 2023
2023 9th International Conference on Energy Materials and Environment Engineering (ICEMEE 2023)
|
|
---|---|---|
Article Number | 02031 | |
Number of page(s) | 6 | |
Section | Energy Conservation Technology and Energy Sustainability | |
DOI | https://doi.org/10.1051/e3sconf/202340602031 | |
Published online | 31 July 2023 |
Study on Laminar Combustion Characteristics of Ammonia/ Hydrogen Premixed Based on Chemical Reaction Kinetics
School of Power Engineering, Naval University of Engineering, Wuhan 430033, China
* Corresponding author: nietao2007@163.com
The combustion characteristics of ammonia/hydrogen premixed laminar flow and the effect of hydrogen on the combustion performance of ammonia fuel were studied. First, the corresponding model of ammonia/ hydrogen premixed laminar combustion is established by using GRI3.0 mechanism, Konnov mechanism, Mei mechanism, Okafor mechanism, and Otomo mechanism respectively. Second, the simulation results are compared with the experimental results. It is found that the Mei mechanism and Okafor mechanism are more suitable for ammonia/ hydrogen premixed laminar combustion. On this basis, the effects of equivalent ratio, hydrogen ratio, and initial temperature on laminar flame velocity, maximum combustion temperature, and NO mole fraction were studied. The results show that the laminar flame velocity, the maximum combustion temperature, and the mole fraction of NO first increase and then decrease with the increase of the equivalent ratio, and the laminar flame velocity reaches the maximum when the equivalent ratio is 1.1. At the same time, with the increase of hydrogen ratio and initial temperature, the maximum combustion temperature increases first and then decreases. The mole fraction of NO increased with the increase of hydrogen ratio and initial temperature. The results show that mixing hydrogen in ammonia can improve the combustion characteristics of ammonia.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.