Open Access
Issue
E3S Web of Conf.
Volume 406, 2023
2023 9th International Conference on Energy Materials and Environment Engineering (ICEMEE 2023)
Article Number 02031
Number of page(s) 6
Section Energy Conservation Technology and Energy Sustainability
DOI https://doi.org/10.1051/e3sconf/202340602031
Published online 31 July 2023
  1. D N Chen, Li J, Huan H Y, et al. Progress in ammonia combustion and reaction mechanism. Chemistry, 83: 508-15 (2020). [Google Scholar]
  2. S K Zhou, Yang W J, Tang H Z, et al. Research progress of ammonia combustion. Proceeding of the CSEE, 41: 4164-4182 (2021). [Google Scholar]
  3. D N Chen, Li J, Deng L S, et al. Numerical study on ammonia/air combustion characteristics in a porous burner. Advances in new and renewable energy, 9: 294-299 (2021). [Google Scholar]
  4. G Tang. Study on combustion characteristics of premixed combustion of ammonia-hydrogen carbon-free fuel. Master dissertation of Harbin institute of technology (2021). [Google Scholar]
  5. W S Chai, Bao Y L, Jin P F, etal. Areviewon ammonia, ammonia-hydrogen and ammonia-methane fuels. Renewable and Sustainable Energy Reviews, 147: 111254 (2021). [CrossRef] [Google Scholar]
  6. X L Han, Wang Z H, et al. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/ air premixed flames. Combustion and Flame, 206: 214-26 (2019). [CrossRef] [Google Scholar]
  7. L M Dai, Sander G, et al. Experimental and numerical analysis of the autoignition behaviour of NH3 and NH3/H2 mixtures at high pressure. Combustion and Flame, 215: 134–144 (2020). [CrossRef] [Google Scholar]
  8. S K Zhou, Yang W J, Tan H Z, et al. Research progress of ammonia combustion. Journal of Chinese Electrical Engineering Science, 41: 4164-4181 (2021). [Google Scholar]
  9. M A,Valera Marsh R, Runyon J, et al. Ammonia– methane combustion in tangential swirl burners for gas turbine power generation. Applied Energy, 185: 1362-1371 (2017). [Google Scholar]
  10. P Kumar, Meyer T R. Experimental and Modeling Study of Chemical-Kinetics Mechanisms for H2– NH3-Air Mixtures in Laminar Premixed Jet Flames. Fuel, 108: 166-176 (2013). [CrossRef] [Google Scholar]
  11. J M Joo, Lee S, Kwon O C. Effects of Ammonia Substitution on Combustion Stability Limits and NOX Emissions of Premixed Hydrogen–Air Flames. International Journal of Hydrogen Energy, 37: 6933-6941 (2012). [CrossRef] [Google Scholar]
  12. Choi Sun, Seungro Lee, Oh Chae Kwon. Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures. Energy, 85: 503-510 (2015). [CrossRef] [Google Scholar]
  13. J Li, H Y Huang, K Noriyuki, et al. Study on using hydrogen and ammonia as fuels : Combustion characteristics and NOx formation. International Journal of Energy Research, 38: 1214-1223 (2014). [CrossRef] [Google Scholar]
  14. J H Lee, S I Lee, O C Kwon. Effects of Ammonia Substitution on Hydrogen/Air Flame Propagation and Emissions. International Journal of Hydrogen Energy, 35: 11332-11341 (2010). [CrossRef] [Google Scholar]
  15. Y Zhang. Propagation and Extinction Studies of Laminar Lean Premixed Syngas/Air Flames. Doctoral Dissertation of Tsinghua University (2014). [Google Scholar]
  16. N Hadi, K Arif. Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms. Fuel, 159: 223-233 (2015). [CrossRef] [Google Scholar]
  17. A A Konnov, Ruyck J D. A possible new route for no formation via N2H3. Combustion Science and Technology, 168: 1-46 (2001). [CrossRef] [Google Scholar]
  18. B Mei, X Y Zhang, S Y Ma, et al. Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combustion and Flame, 210: 236-246 (2019). [CrossRef] [Google Scholar]
  19. E C Okafor, Y Naito, S Colson, et al. Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames. Combustion Flame, 187: 185-198 (2018). [CrossRef] [Google Scholar]
  20. J Otomo, M Koshi, T Mitsumori, et al. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion. International Journal of Hydrogen Energy, 43:3004-3014 (2018). [CrossRef] [Google Scholar]
  21. X L Han. Research on Fundamental Laminar Combustion Characteristics and Reaction Kinetic Mechanism of Innovative Carbon-Free Ammonia Fuel. Doctoral Dissertation of Zhejiang University (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.