Issue |
E3S Web of Conf.
Volume 410, 2023
XXVI International Scientific Conference “Construction the Formation of Living Environment” (FORM-2023)
|
|
---|---|---|
Article Number | 02042 | |
Number of page(s) | 13 | |
Section | Reliability of Buildings and Constructions | |
DOI | https://doi.org/10.1051/e3sconf/202341002042 | |
Published online | 09 August 2023 |
Processing of experimental data describing internal deflagration explosions
Moscow State University of Civil Engineering, Yaroslavskoye shosse, 26, 129337, Moscow, Russia
* Corresponding author: komarovaa@mgsu.ru
This article is devoted to issues related to experimental studies of internal deflagration explosions or emergency explosions occurring inside buildings and premises. In internal emergency explosions, the main role in reducing the explosive pressure to a safe level is played by discharge openings blocked by safety structures (SS). As discharge openings, windows are often used, covered with glazed window blocks, or opened explosion venting structures (EVS).
The article deals with processing experimental data obtained in the study of deflagration explosions occurring inside buildings and premises. The main features and difficulties that arise while analyzing experimental materials are described. The article considers the general methodology for processing experimental data to study deflagration explosions inside buildings and premises. Examples of processing materials from experiments performed in chambers equipped with a transparent edge allow high-speed filming of the explosive combustion process inside the chamber.
The article presents a technique that allows, based on data processing on the overpressure in the explosion chamber, to obtain complete characteristics of the loads that occur in the experimental chamber during an internal deflagration explosion. The proposed technique makes it possible to abandon the transparent edge of the explosion chamber and obtain data on the explosion process based on the numerical processing of the excess pressure created in the explosion chamber. An example of processing a full-scale experiment to determine the effectiveness of a real explosion venting structure (EVS) is given.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.