Issue |
E3S Web Conf.
Volume 419, 2023
V International Scientific Forum on Computer and Energy Sciences (WFCES 2023)
|
|
---|---|---|
Article Number | 03011 | |
Number of page(s) | 8 | |
Section | Agricultural Sciences and the Environment | |
DOI | https://doi.org/10.1051/e3sconf/202341903011 | |
Published online | 25 August 2023 |
Artificial intelligence for ambient air quality control
Ural State University of Economics, Yekaterinburg, Russia
* Corresponding author: e.s.kulikova@mail.ru
Air quality, integral to public health and environmental stability, necessitates innovative solutions for effective monitoring and control. Existing methodologies are often limited in their predictive accuracy, scalability, and cost-effectiveness. This paper explores the potential of Artificial Intelligence (AI) in transforming ambient air quality control. We conduct an in-depth review of current AI applications, examining various models’ strengths and weaknesses in predicting and controlling air quality. These include machine learning, deep learning, and other AI methodologies. Real-world case studies are analyzed to assess the practicality and effectiveness of AI applications. While AI presents promising capabilities, its implementation is not without challenges such as data requirements, interpretability, and scalability. We discuss these issues, propose possible solutions, and explore future prospects for AI in air quality control. The aim is to provide a comprehensive understanding of the role AI can play in environmental management and a pathway towards its enhanced application. This paper invites further research in harnessing AI’s potential to create sustainable and effective air quality control systems.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.