Issue |
E3S Web Conf.
Volume 427, 2023
International Conference on Geotechnical Engineering and Energetic-Iraq (ICGEE 2023)
|
|
---|---|---|
Article Number | 01023 | |
Number of page(s) | 10 | |
Section | Development in Geotechnical Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202342701023 | |
Published online | 13 September 2023 |
Numerical Analysis of the Pile-Grout System in Soft Clay under Vertical and Lateral Load
1 Ministry of Education, General Directorate of Education in Diyala, Diyala, Iraq
2 Department of Civil Engineering, University of Baghdad, Baghdad, Iraq
a ka9936374@gmail.com
b* Corresponding author beilalal7ob@gmail.com
c husam91mahdi@gmail.com
In this paper, a numerical investigation of the effects of grout parameters on the load response of concrete pile-grout systems in soft clay is presented. The study examines the influence of grout diameter and depth on the load bearing capacity of the pile under vertical and lateral loads. The research findings indicate that grouting can enhance the load bearing capacity of a single pile system by up to 27% under vertical loads and up to 51% under lateral loads, depending on the diameter and depth of the grout used. This is due to the grout's ability to fill voids in the soil and improve the soil-pile interface, resulting in better soil-pile interaction. Additionally, the study demonstrates that increasing the diameter and depth of grout leads to a larger treated soil area and subsequently an increase in load bearing capacity. Furthermore, the research indicates a linear relationship between the amount of grout material utilized and the increase in the load bearing capacity of the pile. The study concludes that grouting is an effective method for improving the pile performance systems, particularly in soft soil conditions. The results of the research are consistent with prior studies on the use of grout material to enhance the load-carrying capacity of pile systems.
Key words: Concrete pile-grout system / vertical load / lateral load / numerical investigation / soft clay
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.