Issue |
E3S Web Conf.
Volume 427, 2023
International Conference on Geotechnical Engineering and Energetic-Iraq (ICGEE 2023)
|
|
---|---|---|
Article Number | 04005 | |
Number of page(s) | 9 | |
Section | Environment and Infrastructures | |
DOI | https://doi.org/10.1051/e3sconf/202342704005 | |
Published online | 13 September 2023 |
Hydraulic Model Prediction of the Total Load of Sediment Transport in The Euphrates River at The Upstream Ramadi Barrage
Dams and Water Resources Engineering Department, University of Anbar, Ramadi, Iraq
a* Corresponding author abd21e4002@uoanbar.edu.iq
b sadeq.sulaiman@uoanbar.edu.iq
Examining river engineering properties and bed erosion is one of the most challenging but crucial issues in river engineering and sediment hydraulics, so preventing erosion and sedimentation is one of the primary goals of river management and prediction of river behavior. This research aims to give hydraulic engineers and decision-makers an accurate and dependable sediment transport equation that could be utilized to govern river engineering and modify river morphology. This study evaluated the carried sediments and their estimated quantity upstream of the Ramadi Barrage on the Euphrates River in the Anbar area of western Iraq. Six formulas, including Yang, Shen, Hung, Ackers and White, Engelund and Hansen, and Bagnold's and Toffaleti's, were used to evaluate the applicability of sediment transport in the study area. The performance of these models was assessed based on the precision of the actual sediment load relative to a specified deviation ratio. The analyses indicated that the Engelund-Hansen formula is the most applicable for this section of the river; that concludes, field data indicated an annual total sediment flow of roughly 1, 536, 337 tons.
Key words: Bed load / empirical equations / Euphrates River / sediment transport / suspended load
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.