Issue |
E3S Web Conf.
Volume 431, 2023
XI International Scientific and Practical Conference Innovative Technologies in Environmental Science and Education (ITSE-2023)
|
|
---|---|---|
Article Number | 05025 | |
Number of page(s) | 15 | |
Section | IT and Mathematical Modeling in the Environment | |
DOI | https://doi.org/10.1051/e3sconf/202343105025 | |
Published online | 13 October 2023 |
Numerical analysis of axial compressed multifaceted concrete-filled tube elements
Moscow State (National Research) University of Civil Engineering, Yaroslavskoye Hwy, 26, 129337 Moscow, Russia
* Corresponding author: garigo@mail.ru
The object of study is multifaceted steel concrete- filled poles. The subject of research is the bearing capacity and parameters of the stress-strain state of multifaceted steel concrete- filled poles. The purpose of the research is to numerically study the features of the operation of multifaceted concrete-filled structures under axial compression. Are discussed the features of creating a computational finite element model of such structures in ANSYS APDL. Analytical methods are described for determining the parameters of the nonlinearity of the materials used, as well as the physical and mechanical characteristics of concrete operating under compression conditions. On specific examples the change in the bearing capacity for the object of study under various conditions of materials adhesion (friction coefficient μ varied within 0.1...0.6 with step 0.1). Is analyzed the "unified" analytical method for determining the bearing capacity of steel multifaceted concrete-filled structures, indicating the degree of variability of ultimate compressive load depending on the variation in the number of faces and thickness of the metal wall of the multifaceted model. The considered features of creating a computational model in the ANSYS APDL finite element analysis system, using various laws of deformation of steel and concrete, made it possible to determine the qualitative and quantitative levels of variability of their bearing capacity, which in combination will allow designers of such structures to reach a qualitatively new level when creating structures based on pipe concrete elements.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.