Issue |
E3S Web Conf.
Volume 434, 2023
4th International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2023)
|
|
---|---|---|
Article Number | 01034 | |
Number of page(s) | 6 | |
Section | Energetics | |
DOI | https://doi.org/10.1051/e3sconf/202343401034 | |
Published online | 12 October 2023 |
A review of heat recovery technology for passive ventilation applications
1 Department of Power Supply and Renewable Energy Sources, TIIAME National Research University, 100000 Tashkent, Uzbekistan
2 Tashkent State Technical University, 100097 Tashkent, Uzbekistan
3 Karshi State University, 180119 Karshi, Uzbekistan, Uzbekistan
* Corresponding author: boburshodiyev2994@gmail.com
Regenerative heat exchangers are widely used in life support systems, gas turbines, boilers and other high-temperature industrial installations. These heat exchangers are used for cooling and heating gases, humidification and dehumidification of gases, heat recovery from high-potential heat carriers. Today, the increase in energy consumption and the increase in energy prices require a large-scale energy-saving policy in the creation of modern engineering structures – residential, commercial and industrial facilities alike. When designing and creating life support systems to save energy, it is advisable to use secondary energy resources, such as, for example, the heat of the air removed from the room. The energy intensity of conventional ventilation systems is on average 50–80% of the total energy intensity of the engineering systems of the facility where they are operated. The use of rotating regenerative heat exchangers in ventilation and air conditioning systems makes it possible to return up to 85% of heat to the system at a relatively low capital investment. In this regard, when improving such systems, considerable attention should be paid to the calculation, optimization and increase in the efficiency of heat exchangers. Thus, this work is about increasing the efficiency of rotating regenerative heat exchangers in ventilation and air conditioning systems.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.