Issue |
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
|
|
---|---|---|
Article Number | 03076 | |
Number of page(s) | 18 | |
Section | Environment Science | |
DOI | https://doi.org/10.1051/e3sconf/202344803076 | |
Published online | 17 November 2023 |
A Preliminary Review of Poly(lactic acid)-based Biodegradable Foam and its Techno-economic Model
School of Integrated Science and Innovation, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
* Corresponding author: yusuf.ary@dome.tu.ac.th, pakorn@siit.tu.ac.th
Biodegradable polymers using renewable resources with properties that are comparable to bio-based and fossil-based polymer materials at a comparable cost have been studied and developed in an effort to solve environmental issues, especially expanded polystyrene. One potential raw main material to replace EPS is poly(lactic acid), a synthetic polymer made from lactic acid, which is made by fermenting organic materials like sweetcorn, rice, soya, potatoes, or whey. It is used in food and non-food packaging, drug-controlled release, agriculture, automotive, and electronic accessories. Foaming is vital in developing lighter, more cost-effective materials that may be utilized for a range of purposes due to their general features, such as lightweight, good heat, more ductile (elastic), and excellent energy absorption (impact resistance). In this review, different types of foaming processes and their process parameters are focused at. It was written following the procedures outlined in the PRISMA2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines for conducting a review to reports and evaluating a wide variety of interventions. Furthermore, a sustainable material should focus on the efficacy of its resource consumption and the economic feasibility of the product it creates. An economic feasibility study is also provided in this article aims to evaluate how much profit a production plant can make. The techno-economic model developed in this study yielded a profit on sales of 69.69% and an internal rate of return of 44.0%. Techno-economic modeling favored the commercial use of poly(lactic acid)-based biodegradable foam based on its positive net present value, short payback period, and high internal rate of return.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.