Open Access
Issue
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
Article Number 03076
Number of page(s) 18
Section Environment Science
DOI https://doi.org/10.1051/e3sconf/202344803076
Published online 17 November 2023
  1. E. Iriani, et al. Corn Hominy, a Potential Material for Biodegradable Foam. in Proceeding International Maize Conference (2013) [Google Scholar]
  2. S. Sumardiono, et al., Characteristics of Biodegradable Foam (Bio-foam) Made from Cassava Flour and Corn Fiber. IOP Conference Series: Materials Science and Engineering, 1053(1), 012082 (2021) [CrossRef] [Google Scholar]
  3. Y. A. Yudanto and I. Pudjihastuti, Characterization of physical and mechanical properties of Biodegradable foam from maizena flour and paper waste for sustainable packaging material. International Journal of Engineering Applied Sciences and Technology, 5(8), 1-8 (2020) [CrossRef] [Google Scholar]
  4. Ocean Conservancy. Thailand Roadmap on Plastic Waste Management. 2017 (2022, January). Retrieved from: https://enviliance.com/regions/southeast-asia/th/th-waste/th-plastic-waste . [Google Scholar]
  5. UN Comtrade Database. Export Trade Flows of Styrene Polymers (Expansible Polystyrene) in Primary Forms 2022. (2022, June). Retrieved from: https://comtrade.un.org/ . [Google Scholar]
  6. X. Zhao and F. You, Waste high‐density polyethylene recycling process systems for mitigating plastic pollution through a sustainable design and synthesis paradigm. AIChE Journal, 67(4), e17127 (2021) [CrossRef] [Google Scholar]
  7. C. Zhao, et al., The evolutionary trend and impact of global plastic waste trade network. Sustainability, 13(7), 3662 (2021) [CrossRef] [Google Scholar]
  8. D. R. Tapia-Blácido, et al., Trends and challenges of starch-based foams for use as food packaging and food container. Trends in Food Science & Technology, (2021) [Google Scholar]
  9. C. S. G. Penteado, and M.A.S. de Castro, Covid-19 effects on municipal solid waste management: What can effectively be done in the Brazilian scenario? Resources, Conservation and Recycling, 164, 105152 (2021) [CrossRef] [Google Scholar]
  10. OECD, Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options., OECD Publishing Paris, France. (2022) [Google Scholar]
  11. K. Tang, et al., Experimental and model study on enantioselective reactive extraction of p-hydroxyphenylglycine enantiomers with metal phosphine complexes. Separation and Purification Technology, 115, 83-91 (2013) [CrossRef] [Google Scholar]
  12. L. Averous, et al., Properties of thermoplastic blends: starch–polycaprolactone. Polymer, 41(11), 4157-4167 (2000) [CrossRef] [Google Scholar]
  13. M. Kaseem, K. Hamad, and F. Deri, Preparation and studying properties of thermoplastic starch/acrylonitrile–butadiene–styrene blend. International Journal of Plastics Technology, 16(1), 39-49 (2012) [CrossRef] [Google Scholar]
  14. K. Martinez Villadiego, et al., Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. Journal of Polymers and the Environment, 30(1), 75-91 (2022) [CrossRef] [Google Scholar]
  15. European Bioplastics. Bioplastics Market Data. 2021. (2022, May). Retrieved from: https://www.european-bioplastics.org/market/# . [Google Scholar]
  16. X. F. Yang, et al., Degradation of low gloss polyurethane aircraft coatings under UV and prohesion alternating exposures. Polymer Degradation and Stability, 80(1), 51-58 (2003) [CrossRef] [Google Scholar]
  17. B. Nim and P. Opaprakasit, Quantitative analyses of products from chemical recycling of polylactide (PLA) by alcoholysis with various alcohols and their applications as healable lactide-based polyurethanes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 255, 119684 (2021) [CrossRef] [Google Scholar]
  18. K. Stefaniak and A. Masek, Green Copolymers Based on Poly (Lactic Acid)—Short Review. Materials,. 14(18), 5254 (2021) [CrossRef] [Google Scholar]
  19. L. Yu, et al., Poly(Lactic Acid)/Starch Blends, in Poly(Lactic Acid), 217-226 (2010) [Google Scholar]
  20. G. Wypych, Introduction, in Handbook of Foaming and Blowing Agents, G. Wypych, Editor., ChemTec Publishing, 1-2 (2017) [Google Scholar]
  21. M. Tomin and Á. Kmetty, Polymer foams as advanced energy absorbing materials for sports applications—A review. Journal of Applied Polymer Science, 139(9), 51714 (2022) [CrossRef] [Google Scholar]
  22. F. L. Jin, et al., Recent Trends of Foaming in Polymer Processing: A Review. Polymers (Basel), 11(6), (2019) [Google Scholar]
  23. P. S. Liu and G.F. Chen, Chapter Eight - Applications of Polymer Foams, in Porous Materials, P.S. Liu and G.F. Chen, Editors. Butterworth-Heinemann: Boston, 383-410, (2014) [CrossRef] [Google Scholar]
  24. J. G. Drobny, 4 - Processing Methods Applicable to Thermoplastic Elastomers, in Handbook of Thermoplastic Elastomers (Second Edition), J.G. Drobny, Editor. William Andrew Publishing: Oxford. 33-173, (2014) [CrossRef] [Google Scholar]
  25. K. Parker, et al., Polylactic Acid (PLA) Foams for Packaging Applications, in Handbook of Bioplastics and Biocomposites Engineering Applications. 161-175 (2011) [Google Scholar]
  26. NatureWorks LLC. NatureWorks | Ingeo News: 7, Issue 1. 2010 (2022, July) Retrieved from: https://www.natureworksllc.com/News-and-Events/Vercet%20Newsletter/IngeoNews-V7-Issue1 . [Google Scholar]
  27. Renewable Carbon News. BioFoam: The first CO2 neutral foam in the world - Renewable Carbon News. 2017 (2022,July) Retrieved from: https://renewable-carbon.eu/news/biofoam-the-first-co2-neutral-foam-in-the-world/ . [Google Scholar]
  28. M. J. Page, et al., The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 89 (2021) [CrossRef] [PubMed] [Google Scholar]
  29. D. Moher, et al., Epidemiology and Reporting Characteristics of Systematic Reviews. PLOS Medicine, 4(3), e78 (2007) [CrossRef] [PubMed] [Google Scholar]
  30. N. R. Haddaway, et al., PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2), e1230 (2022) [CrossRef] [PubMed] [Google Scholar]
  31. M. Boers, Graphics and statistics for cardiology: designing effective tables for presentation and publication. Heart, 104(3), 192-200 (2018) [CrossRef] [PubMed] [Google Scholar]
  32. E. Mayo-Wilson, et al., Practical guidance for using multiple data sources in systematic reviews and meta-analyses (with examples from the MUDS study). Research Synthesis Methods, 9(1), 2-12 (2018) [CrossRef] [PubMed] [Google Scholar]
  33. E. Stovold, et al., Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram. Systematic Reviews,. 3(1), 54 (2014) [CrossRef] [Google Scholar]
  34. Access Intelligence LLC. Plant Cost Index Archives - Chemical Engineering. 2020 (2022, May) Retrieved from: https://www.chemengonline.com/site/plant-cost-index/ . [Google Scholar]
  35. R. S. Aries and R.D. Newton, Chemical engineering cost estimation. (1955) [Google Scholar]
  36. J. Coulson and J. Richardson, Chemical Equiment Design. John Wiley and Sons. Inc, New York. (1983) [Google Scholar]
  37. J. R. Couper, Process engineering economics. CRC press. (2003) [CrossRef] [Google Scholar]
  38. M. S. Peters, K.D. Timmerhaus, and R.E. West, Plant design and economics for chemical engineers. McGraw-Hill New York. 4 (2003) [Google Scholar]
  39. R. Whitesides, Process Equipment Estimating by Ratio and Proportion. Course notes, PDH Course G, 127, 1-8 (2012) [Google Scholar]
  40. Republik Indonesia. Perubahan Keempat Atas Undang-Undang Nomor 7 Tahun 1983 tentang Pajak Penghasilan. 2008 (2022, May), Retrieved from: https://jdih.esdm.go.id/peraturan/UU%20No.%2036%20Thn%202008.pdf . [Google Scholar]
  41. T. H. Kwan, Y. Hu, and C.S.K. Lin, Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) production. Journal of Cleaner Production, 181, 72-87 (2018) [CrossRef] [Google Scholar]
  42. A. Hao, et al., Study of different effects on foaming process of biodegradable PLA/starch composites in supercritical/compressed carbon dioxide. Journal of Applied Polymer Science, 109(4), 2679-2686, (2008) [CrossRef] [Google Scholar]
  43. N. M. Moo-Tun, G. Iñiguez-Covarrubias, and A. Valadez-Gonzalez, Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design. Polymer Testing, 86, 106482 (2020) [CrossRef] [Google Scholar]
  44. P. Chen, et al., Crystallization-induced microcellular foaming of poly (lactic acid) with high volume expansion ratio. Polymer Degradation and Stability, 144, 231-240 (2017) [CrossRef] [Google Scholar]
  45. F. Farhanmoghaddam and A. Javadi, Fabrication of poly (lactic acid) foams using supercritical nitrogen. Cellular Polymers, 39(4), 172-182 (2020) [CrossRef] [Google Scholar]
  46. J. F. Zhang and X. Sun, Biodegradable foams of poly (lactic acid)/starch. I. Extrusion condition and cellular size distribution. Journal of applied polymer science, 106(2), 857-862 (2007) [CrossRef] [Google Scholar]
  47. J. F. Zhang and X. Sun, Biodegradable foams of poly(lactic acid)/starch. II. Cellular structure and water resistance. Journal of Applied Polymer Science, 106(5), 3058-3062 (2007) [CrossRef] [Google Scholar]
  48. M. Mihai, et al., Extrusion foaming of semi‐crystalline PLA and PLA/thermoplastic starch blends. Macromolecular bioscience, 7(7), 907-920 (2007) [CrossRef] [PubMed] [Google Scholar]
  49. S. Pilla, et al., Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Materials Science and Engineering: C,. 30(2), 255-262 (2010) [CrossRef] [Google Scholar]
  50. H. Yuan, Z. Liu, and J. Ren, Preparation, characterization, and foaming behavior of poly(lactic acid)/poly(butylene adipate-co-butylene terephthalate) blend. Polymer Engineering & Science, 49(5), 1004-1012 (2009) [CrossRef] [Google Scholar]
  51. J. Zhou, et al., Mechanical properties of PLA/PBS foamed composites reinforced by organophilic montmorillonite. Journal of Applied Polymer Science, 131(18), (2014) [Google Scholar]
  52. P. Ma, et al., Preparation and foaming extrusion behavior of polylactide acid/polybutylene succinate/montmorillonoid nanocomposite. Journal of Cellular Plastics, 48(2), 191-205 (2012) [CrossRef] [Google Scholar]
  53. J. Obradovic, et al., Cellulose Reinforced Green Foams. Advanced Green Composites, 247, (2018) [Google Scholar]
  54. J. Lobos, et al., Improving the stability of polylactic acid foams by interfacially adsorbed particles. Polymer Engineering & Science, 56(1), 9-17 (2016) [CrossRef] [Google Scholar]
  55. G. Wypych, Selection Of Foaming And Blowing Agents For Different Polymers. Handbook of Foaming and Blowing Agents 133-208 (2017) [Google Scholar]
  56. J. A. Villamil Jiménez, et al., Foaming of PLA composites by supercritical fluid-assisted processes: A review. Molecules, 25(15), 3408 (2020) [CrossRef] [PubMed] [Google Scholar]
  57. N. Le Moigne, et al., Microcellular Foaming of (Nano) Biocomposites by Continuous Extrusion Assisted by Supercritical CO2, in Biomass Extrusion and Reaction Technologies: Principles to Practices and Future Potential., ACS Publications, 131-143 (2018) [Google Scholar]
  58. M. Nofar, et al., Poly (lactic acid) blends: Processing, properties and applications. International journal of biological macromolecules, 125, 307-360 (2019) [CrossRef] [PubMed] [Google Scholar]
  59. M. Nofar, and C.B. Park, Poly (lactic acid) foaming. Progress in Polymer Science, 39(10), 1721-1741 (2014) [CrossRef] [Google Scholar]
  60. M. Nofar, and C.B. Park, Polylactide foams: fundamentals, manufacturing, and applications, William Andrew (2017) [Google Scholar]
  61. S. Detyothin, et al., Poly(Lactic Acid) Blends, in Poly(Lactic Acid),227-271, 2010 [Google Scholar]
  62. Z. M. Xu, et al., Foaming of polypropylene with supercritical carbon dioxide. The Journal of Supercritical Fluids, 41(2), 299-310 (2007) [CrossRef] [Google Scholar]
  63. C. B. Park, D.F. Baldwin, and N.P. Suh, Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polymer Engineering & Science, 35(5), 432-440 (1995) [CrossRef] [Google Scholar]
  64. C. Jo, J. Fu, and H.E. Naguib, Constitutive modeling for mechanical behavior of PMMA microcellular foams. Polymer, 46(25), 11896-11903 (2005) [CrossRef] [Google Scholar]
  65. W. Jin, et al., An investigation on the microcellular structure of polystyrene/LCP blends prepared by using supercritical carbon dioxide. Polymer, 42(19), 8265-8275 (2001) [CrossRef] [Google Scholar]
  66. Y. M. Corre, et al., Batch foaming of chain extended PLA with supercritical CO2: Influence of the rheological properties and the process parameters on the cellular structure. The Journal of Supercritical Fluids, 58(1), 177-188 (2011) [CrossRef] [Google Scholar]
  67. D. F. Baldwin, C.B. Park, and N.P. Suh, An extrusion system for the processing of microcellular polymer sheets: Shaping and cell growth control. Polymer Engineering & Science, 36(10), 1425-1435 (1996) [CrossRef] [Google Scholar]
  68. J. Willett, and R. Shogren, Processing and properties of extruded starch/polymer foams. Polymer, 43(22), 5935-5947 (2002) [CrossRef] [Google Scholar]
  69. L. A. Haighton, et al., An evaluation of the possible carcinogenicity of bisphenol A to humans. Regulatory Toxicology and Pharmacology, 35(2), 238-254 (2002) [CrossRef] [PubMed] [Google Scholar]
  70. B. Geissler, et al., Strategies to improve the mechanical properties of high-density polylactic acid foams. Journal of Cellular Plastics, 52(1), 15-35 (2016) [CrossRef] [Google Scholar]
  71. J. W. Lee, and C.B. Park, Use of Nitrogen as a Blowing Agent for the Production of Fine‐Celled High‐Density Polyethylene Foams. Macromolecular Materials and Engineering, 291(10), 1233-1244 (2006) [CrossRef] [Google Scholar]
  72. H. Zhao, et al., Processing and characterization of solid and microcellular poly (lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Composites Part B: Engineering, 51, 79-91 (2013) [CrossRef] [Google Scholar]
  73. E. C. L. Cardoso, et al., Study of bio-based foams prepared from PBAT/PLA reinforced with bio-calcium carbonate and compatibilized with gamma radiation., IntechOpen, 139-139 (2019) [Google Scholar]
  74. H. Yuan, Z. Liu, and J. Ren, Preparation, characterization, and foaming behavior of poly (lactic acid)/poly (butylene adipate‐co‐butylene terephthalate) blend. Polymer Engineering & Science, 49(5), 1004-1012 (2009) [CrossRef] [Google Scholar]
  75. Y. Deng, and N.L. Thomas, Blending poly (butylene succinate) with poly (lactic acid): Ductility and phase inversion effects. European Polymer Journal, 71, 534-546 (2015) [CrossRef] [Google Scholar]
  76. PT Bank HSBC Indonesia. Indonesia Rupiah Time Deposit. 2022 (2022, July) Retrieved from: https://www.hsbc.co.id/1/2/en/personal/accounts/indonesia-rupiah-time-deposit#interest-rates . [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.