Issue |
E3S Web Conf.
Volume 459, 2023
XXXIX Siberian Thermophysical Seminar (STS-39)
|
|
---|---|---|
Article Number | 08005 | |
Number of page(s) | 6 | |
Section | Thermophysics of Micro- and Nanosystems | |
DOI | https://doi.org/10.1051/e3sconf/202345908005 | |
Published online | 04 December 2023 |
Investigation of the stability of nanofluids based on water and carbon nanoparticles synthesized by the electric arc method
1 Kutateladze Institute of Thermophysics, 630090 Novosibirsk, Russia
2 Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia
* Corresponding author: morozova.itp@gmail.com
In this work, arc discharge synthesis was carried out by sputtering electrodes of various compositions in a helium medium, as a result of which two types of materials containing carbon globules and graphene flakes were obtained. The synthesized materials were characterized with transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. The effect of the type and concentration of carbon nanoparticles and the type of surfactants on the stability of water-based nanofluids was studied with optical spectroscopy. For carbon globules and water, the mass concentrations of nanoparticles and sodium dodecyl sulfate were determined to obtain a nanofluid based on them stable for 1 month, which are 0.02% and 1%, respectively. It was shown that the use of neonol AF 9-12 at a concentration of 2% didn’t lead to the stabilization of carbon globules with a mass concentration of 0.02% in water. For graphene flakes, the mass concentrations of nanoparticles and stabilizers to obtain a water-based nanofluid stable for 1 month were: 0.02% graphene flakes and 1% SDS, as well as 0.02% graphene flakes and 2% neonol AF 9-12, respectively.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.