Open Access
Issue
E3S Web Conf.
Volume 459, 2023
XXXIX Siberian Thermophysical Seminar (STS-39)
Article Number 08005
Number of page(s) 6
Section Thermophysics of Micro- and Nanosystems
DOI https://doi.org/10.1051/e3sconf/202345908005
Published online 04 December 2023
  1. W. Yu, D. M. France, J.L. Routbort, S.U.S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements // Heat Transfer Eng. 29, 432 (2008) [CrossRef] [Google Scholar]
  2. J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Keblinski. Nanofluids for thermal transport // Annu. Rev. Mat. Res. 34, 219 (2004) [CrossRef] [Google Scholar]
  3. S.K. Das, S.U.S. Choi, H.E. Patel. Heat transfer in nanofluids - a review // Heat Transfer Eng. 27, 3 (2006) [CrossRef] [Google Scholar]
  4. S. H. A. Ahmad, R. Saidur, I. M. Mahbubul, F. A. Al-Sulaiman. Optical properties of various nanofluids used in solar collector: A review // Renewable Sustainable Energy Rev. 73, 1014 (2017) [CrossRef] [Google Scholar]
  5. P. K. Nagarajan, J. Subramani, S. Suyambazhahan, R. Sathyamurthy. Nanofluids for solar collector applications: a review // Energy Procedia 61, 2416 (2014) [CrossRef] [Google Scholar]
  6. X. Li, G. Zeng, X. Lei. The stability, optical properties and solar-thermal conversion performance of SiC-MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application // Sol. Energy Mater Sol. Cells 206, 110323 (2020) [CrossRef] [Google Scholar]
  7. A. S. Dmitriev, A. V. Klimenko. Conversion of solar radiation into vapor: new possibilities offered by nanomaterials // Thermal Engineering 67, 77 (2020) [CrossRef] [Google Scholar]
  8. S. P. Tembhare, D. P. Barai, B. A. Bhanvase. Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review // Renewable Sustainable Energy Rev. 153, 111738 (2022) [CrossRef] [Google Scholar]
  9. A. O. Borode, N. A. Ahmed, P. A. Olubambi. Surfactant-aided dispersion of carbon nanomaterials in aqueous solution // Phys. Fluids 31, 071301 (2019) [CrossRef] [Google Scholar]
  10. T. J. Choi, S. P. Jang, M. A. Kedzierski. Effect of surfactants on the stability and solar thermal absorption characteristics of water-based nanofluids with multi-walled carbon nanotubes // Int. J. Heat Mass Transfer 122, 483 (2018) [CrossRef] [Google Scholar]
  11. T. P. Dyachkova, A. G. Tkachev. Methods of functionalization and modification of carbon nanotubes (Publishing House Spektr, Moscow, 2013) [Google Scholar]
  12. L. Huicheng et al. Recent advances in thermal conductivity and thermal applications of graphene and its derivatives nanofluids // Appl. Therm. Eng. 218, 119176 (2022) [Google Scholar]
  13. A. V. Zaikovskii, T.Y. Kardash, B.A. Kolesov, O. A. Nikolaeva. Graphene, SiC and Si nanostructures synthesis during quartz pyrolysis in arc-discharge plasma // Phys. Stat. Sol. A 216 (14), 1900079 (2019) [Google Scholar]
  14. M. A. Morozova, A.V. Ukhina, A.V. Zaikovskii. Influence of pressure of propane-butane mixture on morphology of carbon nanomaterials formed in an arc discharge // Thermophysics and Aeromechanics (to be published). [Google Scholar]
  15. D.V. Smovzh, I.A. Kostogrud, S.Z. Sakhapov, A.V. Zaikovskii, S.A. Novopashin. The synthesis of few-layered graphene by the arc discharge sputtering of a Si-C electrode // Carbon 112, 97 (2017) [CrossRef] [Google Scholar]
  16. B. Vigolo et al. Macroscopic fibers and ribbons of oriented carbon nanotubes // Science 290 (5495), 1331 (2000) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.