Issue |
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 12 | |
Section | Sustainable Development | |
DOI | https://doi.org/10.1051/e3sconf/202447203001 | |
Published online | 05 January 2024 |
Securing IoT Devices from DDoS Attacks through Blockchain and Multi-Code Trust Framework
1 Department of CSE, CVR College of Engineering
2 Department of CSE, CVR College of Engineering
3 Department of CSE, CVR College of Engineering
4 Department of CSE, CVR College of Engineering
* Corresponding author: venkateshsharma.cse@gmail.com
sharada.ch@gmail.com
m.vasavi@cvr.ac.in
kummeraambika999@gmail.com
In an era where IoT devices are integral components of numerous systems, their security from prevalent DDoS attacks has become imperative. The traditional security protocols are unable to withstand the sophisticated nature of these attacks, presenting an escalating vulnerability issue in the network security ecosystem. This research proposes a revolutionary approach to address these challenges through a “Blockchain and Multi-Code Trust Framework” utilizing the “UNB IoT DDoS Data Set.” Leveraging the decentralized and immutable characteristics of blockchain technology, alongside a multi-code driven trust mechanism, this framework aims to create a secure, robust, and resilient environment for IoT devices. Our methodology capitalizes on blockchain's transparency to foster trust and validation in network transactions, significantly reducing the threat surface for DDoS attacks. Furthermore, the incorporation of a multi-code system intensifies the security measures, providing several layers of protection against potential breaches. Data sets used in this study encompass diverse real-world IoT network traffic, meticulously collected from the “UNB IoT DDoS Data Set,” to facilitate a comprehensive analysis of the system's performance under various attack scenarios. Our preliminary findings indicate a remarkable improvement in the security posture of IoT devices, exhibiting a substantial reduction in successful DDoS attacks, thereby achieving a new pinnacle in IoT security. This research not only proposes a robust solution to a pressing issue but also opens avenues for further innovations in IoT device security using blockchain technology.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.