Open Access
Issue
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
Article Number 03001
Number of page(s) 12
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202447203001
Published online 05 January 2024
  1. Yang, Y., Luo, X., Chu, X., Zhou, M. T., Yang, Y., Luo, X., & Zhou, M. T. (2020). loT technologies and applications. Fog-Enabled Intelligent IoT Systems, 1–37. [Google Scholar]
  2. Gupta, B. B., & Dahiya, A. (2021). Distributed Denial of Service (DDoS) Attacks: Classification, Attacks, Challenges and Countermeasures. CRC press. [CrossRef] [Google Scholar]
  3. Ayushi Singh, Gulafsha Shujaat, Isha Singh, Abhishek Tripathi, & Divya Thakur. (2019). A Survey of Blockchain Technology Security. International Journal of Computer Engineering in Research Trends, 6(4), 299–303. [Google Scholar]
  4. Naz, M., Al-Zahrani, F. A., Khalid, R., Javaid, N., Qamar, A. M., Afzal, M. K., & Shafiq, M. (2019). A secure data sharing platform using blockchain and interplanetary file system. Sustainability, 11(24), 7054. [CrossRef] [Google Scholar]
  5. Chanson, M., Bogner, A., Bilgeri, D., Fleisch, E., & Wortmann, F. (2019). Blockchain for the IoT: privacy-preserving protection of sensor data. Journal of the Association for Information Systems, 20(9), 1274–1309. [Google Scholar]
  6. Putra, G. D., Dedeoglu, V., Kanhere, S. S., & Jurdak, R. (2020, May). Trust management in decentralized iot access control system. In 2020 IEEE international conference on blockchain and cryptocurrency (ICBC) (pp. 1–9). IEEE. [Google Scholar]
  7. Mihoub, A., Fredj, O. B., Cheikhrouhou, O., Derhab, A., & Krichen, M. (2022). Denial of service attack detection and mitigation for internet of things using looking-back- enabled machine learning techniques. Computers & Electrical Engineering, 98, 107716. [CrossRef] [Google Scholar]
  8. G., P., Dunna, N. R., & Kaipa, C. S. (2023). Enhancing Cloud-Based IoT Security: Integrating AI and Cyber security Measures. International Journal of Computer Engineering in Research Trends, 10(5), 26–32. https://doi.org/10.22362/ijcert.v10i5.43 [Google Scholar]
  9. Pasha, M. J., Pingili, M., Sreenivasulu, K., Bhavsingh, M., Saheb, S. I., & Saleh, A. (2022). Bug2 algorithm-based data fusion using mobile element for IoT-enabled wireless sensor networks. Measurement: Sensors, 24, 100548. [CrossRef] [Google Scholar]
  10. Nayomi, B. D. D., Mallika, S. S., Sowmya, T., Janardhan, G., Laxmikanth, P., & Bhavsingh, M. (2024). A Cloud-Assisted Framework Utilizing Blockchain, Machine Learning, and Artificial Intelligence to Countermeasure Phishing Attacks in Smart Cities. International Journal of Intelligent Systems and Applications in Engineering, 12(1s), 313–327. [Google Scholar]
  11. C. Ch. Sarada, K. V. Lakshmi, and M. Padmavathamma, “MLO Mammogram Pectoral Masking with Ensemble of MSER and Slope Edge Detection and Extensive Pre-Processing”, IJRITCC, vol. 11, no. 3, pp. 135–144, Apr. 2023. [CrossRef] [Google Scholar]
  12. S. Suguna Mallika, D. Rajya Lakshmi, “MUTWEB-A testing tool for performing mutation testing of java and servlet based web applications”, International Journal of Innovative Technology and Exploring Engineering, (2019), vol 8 Issue 12, pp. 5406–5413 [CrossRef] [Google Scholar]
  13. Suguna Mallika S., and Rajya Lakshmi D. “Mutation Testing and Its Analysis on Web Applications for Defect Prevention and Performance Improvement.” IJEC Vol. 17, No. 1 2021: pp. 71–88. http://doi.org/10.4018/IJeC.2021010105. [Google Scholar]
  14. Suguna Mallika S., and D. Rajya Lakshmi, “Mutation Testing and Web Applications— A Test Driven Development Approach for Web Applications Built with Java Script”, Intelligent Systems Reference Library, A Fusion of Artificial Intelligence and Internet of Things for Emerging Cyber Systems. Volume 210, pp: 243–259 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.