Issue |
E3S Web Conf.
Volume 473, 2024
The 3rd International Conference on Renewable Energy (I-CORE 2023)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 11 | |
Section | Advance Material | |
DOI | https://doi.org/10.1051/e3sconf/202447303003 | |
Published online | 08 January 2024 |
Investigating the CoS2 Mass Fraction Enhancing Performance Supercapacitor for Medium Low Consumption
1 Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, Indonesia
2 Center of Advanced Materials for Renewable Energy, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, Indonesia
3 School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 3000, Thailand
* Corresponding author: markus.diantoro.fmipa@um.ac.id.
Supercapacitor are one of the most environmentally friendly electrical energy storage devices. Improvement of supercapacitor performance continues to be carried out by combining active materials and transition metal oxides/hydroxides. In this study, a composite electrode material based on activated carbon with a mass percent variation of CoS2 has been successfully carried out. The composition of Ni(OH)2 - CoS2 /Graphene Nanosheet//Carbon electrode consists of 10, 15, and 20% CoS2 . The electrodes were then characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope - Energy Dispersive X-ray (SEM-EDX). The research was continued by fabricating a symmetric coin cell. Supercapacitor device performance was characterized using Cyclic Voltammetry (CV), Charge-Discharge (CD) and Electrochemical Impedance Spectroscopy (EIS). The morphology of activated carbon shows porous chunks that are beneficial in the electrolyte ion adsorption process. While CoS2 and Ni(OH)2 materials indicated in bulk form. Characterization results show the most optimum sample is in the 15% CoS2 sample with EIS characterization showing the smallest equivalent series resistance (ESR) of 0.81 Ω. CD characterization results were able to have specific capacitance, energy density and power density of 58.25 Fg-1, 1.59 Wh/kg, and 70.49 W/kg respectively and were able to survive up to 88.84% after 1000 test.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.