Open Access
Issue
E3S Web Conf.
Volume 473, 2024
The 3rd International Conference on Renewable Energy (I-CORE 2023)
Article Number 03003
Number of page(s) 11
Section Advance Material
DOI https://doi.org/10.1051/e3sconf/202447303003
Published online 08 January 2024
  1. P. V. Shinde, N. M. Shinde, J. M. Yun, R. S. Mane, and K. H. Kim, “Facile Chemical Synthesis and Potential Supercapacitor Energy Storage Application of Hydrangea-type Bi 2 MoO 6,” ACS Omega, vol. 4, no. 6, pp. 11093–11102, Jun. 2019, doi: 10.1021/acsomega.9b00522. [CrossRef] [PubMed] [Google Scholar]
  2. A. A. Saleh, N. Ahmed, A. H. Biby, and N. K. Allam, “Supercapacitor electrode materials by Design: Plasmainduced defect engineering of bimetallic oxyphosphides for energy storage, ” J. Colloid Interface Sci., vol. 603, pp. 478–490, Dec. 2021, doi: 10.1016/j.jcis.2021.06.125. [CrossRef] [Google Scholar]
  3. Q. Hu et al., “Core-shell MnO2@CoS nanosheets with oxygen vacancies for highperformance supercapacitor,” J. Power Sources, vol. 446, p. 227335, Jan. 2020, doi: 10.1016/j.jpowsour.2019.227335. [CrossRef] [Google Scholar]
  4. J. J. William, I. M. Babu, and G. Muralidharan, “Spongy structured α-Ni(OH)2: Facile and rapid synthesis for supercapacitor applications, ” Mater. Lett., vol. 238, pp. 35–37, Mar. 2019, doi: 10.1016/j.matlet.2018.11.136. [CrossRef] [Google Scholar]
  5. L. Yu and G. Z. Chen, “Supercapatteries as High-Performance Electrochemical Energy Storage Devices, ” Electrochem. Energy Rev., vol. 3, no. 2, pp. 271–285, Jun. 2020, doi: 10.1007/s41918-020-00063-6. [CrossRef] [Google Scholar]
  6. L. Yu and G. Z. Chen, “Redox electrode materials for supercapatteries, ” J. Power Sources, vol. 326, pp. 604– 612, Sep. 2016, doi: 10.1016/j.jpowsour.2016.04.095. [CrossRef] [Google Scholar]
  7. N. M. Shinde, P. V. Shinde, J. M. Yun, R. S. Mane, and K. H. Kim, “Roomtemperature chemical synthesis of 3‐D dandelion‐type nickel chloride (NiCl2@NiF) supercapacitor nanostructured materials, ” J. Colloid Interface Sci., vol. 578, pp. 547– 554, Oct. 2020, doi: 10.1016/j.jcis.2020.04.021. [CrossRef] [Google Scholar]
  8. Y. Xiao, Y. Liu, F. Liu, P. Han, and G. Qin, “Wearable pseudocapacitor based on porous MnO2 composite, ” J. Alloys Compd., vol. 813, p. 152089, Jan. 2020, doi: 10.1016/j.jallcom.2019.152089. [CrossRef] [Google Scholar]
  9. S. Cheng et al., “Energizing Fe2O3-based supercapacitors with tunable surface pseudocapacitance via physical spatial-confining strategy, ” Chem. Eng. J., vol. 406, p. 126875, Feb. 2021, doi: 10.1016/j.cej.2020.126875. [CrossRef] [Google Scholar]
  10. M. Mandal et al., “A high-performance pseudocapacitive electrode based on CuO– MnO2 composite in redoxmediated electrolyte, ” J. Mater. Sci., vol. 56, no. 4, pp. 3325–3335, Feb. 2021, doi: 10.1007/s10853-020-054157. [CrossRef] [Google Scholar]
  11. H. Jiang, Z. Wang, L. Dong, and M. Dong, “Co(OH)2/MXene composites for tunable pseudo-capacitance energy storage, ” Electrochimica Acta, vol. 353, p. 136607, Sep. 2020, doi: 10.1016/j.electacta.2020.136607. [CrossRef] [Google Scholar]
  12. J. Yus et al., “Semiconductor water-based inks: Miniaturized NiO pseudocapacitor electrodes by inkjet printing, ” J. Eur. Ceram. Soc., vol. 39, no. 9, pp. 2908–2914, Aug. 2019, doi: 10.1016/j.jeurceramsoc.2019.03.020. [CrossRef] [Google Scholar]
  13. X. Li et al., “Layer-by-layer inkjet printing GO film anchored Ni(OH)2 nanoflakes for high-performance supercapacitors, ” Chem. Eng. J., vol. 375, p. 121988, Nov. 2019, doi: 10.1016/j.cej.2019.121988. [CrossRef] [Google Scholar]
  14. Y.-L. Liu et al., “Achieving Ultrahigh Capacity with Self-Assembled Ni(OH) 2 Nanosheet-Decorated Hierarchical Flower-like MnCo 2 O 4.5 Nanoneedles as Advanced Electrodes of Battery–Supercapacitor Hybrid Devices, ” ACS Appl. Mater. Interfaces, vol. 11, no. 10, pp. 9984–9993, Mar. 2019, doi: 10.1021/acsami.8b21803. [CrossRef] [PubMed] [Google Scholar]
  15. G. Surender, F. S. Omar, S. Bashir, M. Pershaanaa, S. Ramesh, and K. Ramesh, “Growth of nanostructured cobalt sulfide-based nanocomposite as faradaic binder-free electrode for supercapacitor, ” J. Energy Storage, vol. 39, p. 102599, Jul. 2021, doi: 10.1016/j.est.2021.102599. [CrossRef] [Google Scholar]
  16. M. W. Iqbal et al., “Facile hydrothermal synthesis of high-performance binary silvercobalt-sulfide for supercapacitor devices, ” J. Energy Storage, vol. 52, p. 104847, Aug. 2022, doi: 10.1016/j.est.2022.104847. [CrossRef] [Google Scholar]
  17. L. Jinlong, L. Tongxiang, Y. Meng, K. Suzuki, and H. Miura, “Comparing different microstructures of CoS formed on bare Ni foam and Ni foam coated graphene and their supercapacitors performance, ” Colloids Surf. Physicochem. Eng. Asp., vol. 529, pp. 57–63, Sep. 2017, doi: 10.1016/j.colsurfa.2017.05.074. [CrossRef] [Google Scholar]
  18. H. Luo et al., “Engineering Ternary Copper-Cobalt Sulfide Nanosheets as Highperformance Electrocatalysts toward Oxygen Evolution Reaction, ” Catalysts, vol. 9, no. 5, p. 459, May 2019, doi: 10.3390/catal9050459. [CrossRef] [Google Scholar]
  19. M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, and S. Li, “Nanohoneycomb-like manganese cobalt sulfide/three dimensional graphene-nickel foam hybid electrodes for high-rate capability supercapacitors, ” Appl. Surf. Sci., vol. 396, pp. 1816–1824, Feb. 2017, doi: 10.1016/j.apsusc.2016.11.203. [CrossRef] [Google Scholar]
  20. H. Quan, B. Cheng, D. Chen, X. Su, Y. Xiao, and S. Lei, “One-pot synthesis of αMnS/nitrogen-doped reduced graphene oxide hybrid for high-performance asymmetric supercapacitors, ” Electrochimica Acta, vol. 210, pp. 557–566, Aug. 2016, doi: 10.1016/j.electacta.2016.05.031. [CrossRef] [Google Scholar]
  21. A. Mohammadi Zardkhoshoui, B. Ameri, and S. Saeed Hosseiny Davarani, “Fabrication of hollow MnFe2O4 nanocubes assembled by CoS2 nanosheets for hybrid supercapacitors, ” Chem. Eng. J., vol. 435, p. 135170, May 2022, doi: 10.1016/j.cej.2022.135170. [CrossRef] [Google Scholar]
  22. S. Y. Shajaripour Jaberi, A. Ghaffarinejad, Z. Khajehsaeidi, and A. Sadeghi, “The synthesis, properties, and potential applications of CoS2 as a transition metal dichalcogenide (TMD), ” Int. J. Hydrog. Energy, vol. 48, no. 42, pp. 15831–15878, May 2023, doi: 10.1016/j.ijhydene.2023.01.056. [CrossRef] [Google Scholar]
  23. Q. Wu, L. Liu, H. Guo, L. Li, and X. Tai, “Decorated by Cu nanoparticles CoS2 nanoneedle array for effective water oxidation electrocatalysis, ” J. Alloys Compd., vol. 821, p. 153219, Apr. 2020, doi: 10.1016/j.jallcom.2019.153219. [CrossRef] [Google Scholar]
  24. C. S et al., “A facile supercritical fluid synthesis of cobalt sulfide integrated with MXene and PANI/PEDOT nanocomposites as electrode material for supercapacitor applications, ” FlatChem, vol. 37, p. 100456, Jan. 2023, doi: 10.1016/j.flatc.2022.100456. [CrossRef] [Google Scholar]
  25. W. Liu et al., “Cobalt disulfide/carbon nanofibers with mesoporous heterostructure and excellent hydrophilicity for high energy density asymmetric supercapacitor, ” Nano Res., vol. 16, no. 7, pp. 10401–10411, Jul. 2023, doi: 10.1007/s12274-023-5533-1. [CrossRef] [Google Scholar]
  26. J. Xu et al., “Template strategy to synthesize porous Mn-Co-S nanospheres electrode for high-performance supercapacitors, ” J. Energy Storage, vol. 44, p. 103267, Dec. 2021, doi: 10.1016/j.est.2021.103267. [CrossRef] [Google Scholar]
  27. F. Chen, Y. Ji, F. Ren, S. Tan, and Z. Wang, “Three-dimensional hierarchical coreshell CuCo2O4@Co(OH)2 nanoflakes as high-performance electrode materials for flexible supercapacitors, ” J. Colloid Interface Sci., vol. 586, pp. 797–806, Mar. 2021, doi: 10.1016/j.jcis.2020.11.004. [CrossRef] [Google Scholar]
  28. S. Iqbal, H. Khatoon, A. Hussain Pandit, and S. Ahmad, “Recent development of carbon based materials for energy storage devices, ” Mater. Sci. Energy Technol., vol. 2, no. 3, pp. 417–428, Dec. 2019, doi: 10.1016/j.mset.2019.04.006. [Google Scholar]
  29. B. Singu, E. S. Goda, and K. Yoon, “Carbon Nanotube–Manganese oxide nanorods hybrid composites for highperformance supercapacitor materials, ” J. Ind. Eng. Chem., vol. 97, Feb. 2021, doi: 10.1016/j.jiec.2021.02.002. [Google Scholar]
  30. B. K. Kim, S. Sy, A. Yu, and J. Zhang, “Electrochemical Supercapacitors for Energy Storage and Conversion, ” in Handbook of Clean Energy Systems, J. Yan, Ed., Chichester, UK: John Wiley & Sons, Ltd, 2015, pp. 1–25. doi: 10.1002/9781118991978.hces112. [Google Scholar]
  31. D. Bhattacharjya, D. Carriazo, J. Ajuria, and A. Villaverde, “Study of electrode processing and cell assembly for the optimized performance of supercapacitor in pouch cell configuration, ” J. Power Sources, vol. 439, p. 227106, Nov. 2019, doi: 10.1016/j.jpowsour.2019.227106. [CrossRef] [Google Scholar]
  32. S.-H. Lee and J.-M. Kim, “Improved performances of hybrid supercapacitors using granule Li4Ti5O12/activated carbon composite anode, ” Mater. Lett., vol. 228, pp. 220–223, Oct. 2018, doi: 10.1016/j.matlet.2018.06.006. [CrossRef] [Google Scholar]
  33. X. Yang et al., “Comparative evaluation of PPyNF/CoOx and PPyNT/CoOx nanocomposites as battery-type supercapacitor materials via a facile and low-cost microwave synthesis approach, ” Electrochimica Acta, vol. 311, pp. 230–243, Jul. 2019, doi: 10.1016/j.electacta.2019.04.084. [CrossRef] [Google Scholar]
  34. A. M. Abdul Mageeth, S. Park, M. Jeong, W. Kim, and C. Yu, “Planar-type thermally chargeable supercapacitor without an effective heat sink and performance variations with layer thickness and operation conditions, ” Appl. Energy, vol. 268, p. 114975, Jun. 2020, doi: 10.1016/j.apenergy.2020.114975. [CrossRef] [Google Scholar]
  35. S. Kumagai, K. Mukaiyachi, and D. Tashima, “Rate and cycle performances of supercapacitors with different electrode thickness using non-aqueous electrolyte, ” J. Energy Storage, vol. 3, pp. 10–17, Oct. 2015, doi: 10.1016/j.est.2015.08.002. [CrossRef] [Google Scholar]
  36. F. Wang et al., “Electrode thickness design toward bulk energy storage devices with high areal/volumetric energy density, ” Appl. Energy, vol. 289, p. 116734, May 2021, doi: 10.1016/j.apenergy.2021.116734. [CrossRef] [Google Scholar]
  37. M. Arvani et al., “Additive manufacturing of monolithic supercapacitors with biopolymer separator, ” J. Appl. Electrochem., vol. 50, no. 6, pp. 689–697, Jun. 2020, doi: 10.1007/s10800-020-01423-2. [CrossRef] [Google Scholar]
  38. A. Pramitha and Y. Raviprakash, “Recent developments and viable approaches for high-performance supercapacitors using transition metal-based electrode materials, ” J. Energy Storage, vol. 49, p. 104120, May 2022, doi: 10.1016/j.est.2022.104120. [CrossRef] [Google Scholar]
  39. M. Diantoro et al., “Hierarchical Activated Carbon–MnO2 Composite for Wide Potential Window Asymmetric Supercapacitor Devices in Organic Electrolyte, ” Micromachines, vol. 13, no. 11, Art. no. 11, Nov. 2022, doi: 10.3390/mi13111989. [CrossRef] [PubMed] [Google Scholar]
  40. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, “A review of electrolyte materials and compositions for electrochemical supercapacitors, ” Chem. Soc. Rev., vol. 44, no. 21, pp. 7484–7539, Oct. 2015, doi: 10.1039/C5CS00303B. [CrossRef] [PubMed] [Google Scholar]
  41. J. Han, H. L. Chan, M. G. Wartenberg, H. H. Heinrich, and J. R. Scully, “Distinguishing interfacial double layer and oxide-based capacitance on gold and preoxidized Fe-Cr in 1-ethyl-3-methylimidazolium methanesulfonate room temperature ionic liquid aqueous mixture, ” Electrochem. Commun., vol. 122, p. 106900, Jan. 2021, doi: 10.1016/j.elecom.2020.106900. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.