Issue |
E3S Web Conf.
Volume 598, 2024
2024 9th International Conference on Advances in Energy and Environment Research (ICAEER 2024)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 10 | |
Section | Research on Innovations of New Materials and Environmental Protection | |
DOI | https://doi.org/10.1051/e3sconf/202459801008 | |
Published online | 27 November 2024 |
Optimization of the Target Layer for Three-Dimensional Shale Gas Development in Weiyuan Block
1 Research Institute of Petroleum Exploration and Development, Beijing 100083, China
2 PetroChina Southwest Oil & Gas field Company, Chengdu 610056, China
3 Southwest Petroleum University, Chengdu 610500, China
4 School of Petroleum Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
* Corresponding author: wanyj69@petrochina.com.cn
** 2022206024@cqust.edu.cn
In order to explore whether the Weiyuan block can effectively carry out three-dimensional development well network deployment, we should first explore whether there is a target layer to meet the three-dimensional development. Based on three-dimensional geological, fracture and rock mechanics models, this paper finds that the absolute stress difference between Longyi14a minor layer and Longyi14b minor layer in the study area is less than 5 MPa, and there is no obvious stress isolation section, and the longitudinal distance of the upper part of Longyi14a minor layer from the top of Longyi11 layer distributes in the range of 18~28 m, which is able to effectively avoid strong inter-well interference with the horizontal wells of Longyi11 layer. So, according to the distribution characteristics of the remaining reserves and reservoir characteristics of Weiyuan block, Longyi14a minor layer is initially preferred as the target for three-dimensional development. In order to further explore the specific layers, based on the original three wells of H3 platform, four threedimensional development schemes with different target layers were designed, deploying L4 and L5 wells in the Longyi13 layer~Longyi14c minor layer, and the Longyi14a minor layer was confirmed as a three-dimensional development target layer system based on numerical simulation results. Finally, in the lower half branch of H3 platform, an “M” type three-dimensional well network pattern with five wells was adopted (three 4a wells of the lower layer Longyi11 layer L1, L2 and L3, and two wells of the upper Longyi14a minor layer - L4 and L5). The three-dimensional well network can increase production for the platform by 1.76×108 m3 and recovery increased from 14.3% to 29.3%, an overall increase of 15%. The relevant understanding can provide a reference for the three-dimensional development strategy of Weiyuan shale gas block.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.