Issue |
E3S Web Conf.
Volume 484, 2024
The 4th Faculty of Industrial Technology International Congress: Development of Multidisciplinary Science and Engineering for Enhancing Innovation and Reputation (FoITIC 2023)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 17 | |
Section | Information System And Technology Advancement | |
DOI | https://doi.org/10.1051/e3sconf/202448402008 | |
Published online | 07 February 2024 |
Comparison of K-Medoids and K-Means Algorithms in Segmenting Customers based on RFM Criteria
Information System Departemnt, Institut Teknologi Nasional Bandung, Indonesia
The company’s approach to customers is important to maintain the company’s profits. Understanding the differences of each customer is very important so that we can understand customer needs based on customer data. Customer Relationship Management (CRM) is considered as a solution to bridge the company and customers. Customer segmentation needs to be done to make it easier for companies to meet customer needs. Data mining and RFM modelling are used for customer segmentation in online retail companies using K-Means and K-Medoids methods. This research compares the performance of both algorithms using Davies Bouldin Index (DBI) and execution time. The results show K-Means is better in cluster validation and execution time. The average DBI value of K-Means is 0.2962 with an execution time of 0.0960 with k=3, while K-Medoids produces a DBI of 0.8942 and an execution time of 2.4295 with k=5. K-Means RFM customer tiers 1-3: Potential Customer/Golden Customer, Lost Customer/ Dormant Customer, and Superstar/Core Customer, 1-5: Champion and Lost. K-Medoids RFM 1-5: Lost, Loyal Customer, Champion, At Risk, and Hibernating, 1-3: Lost Customer/Dormant Customer, Potential Customer/Golden Customer, Superstar/Core Customer, Potential Customer/Golden Customer, and At Risk Customers/Occasional customer.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.