Open Access
Issue |
E3S Web Conf.
Volume 484, 2024
The 4th Faculty of Industrial Technology International Congress: Development of Multidisciplinary Science and Engineering for Enhancing Innovation and Reputation (FoITIC 2023)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 17 | |
Section | Information System And Technology Advancement | |
DOI | https://doi.org/10.1051/e3sconf/202448402008 | |
Published online | 07 February 2024 |
- S. I. Murpratiwi, I. G. Agung Indrawan, and A. Aranta, J. Pendidik. Teknol. dan Kejuru., Vol. 18, No. 2, p. 152, (2021), doi: 10.23887/jptk-undiksha.v18i2.37426. [CrossRef] [Google Scholar]
- R. Siagian, P. Sirait, and A. Halim, Sistemasi, Vol. 11, No. 2, p. 260, (2022), doi: 10.32520/stmsi.v11i2.1337. [CrossRef] [Google Scholar]
- A. B. H. Kiat, Y. Azhar, and V. Rahmayanti, J. Repos., Vol. 2, No. 7, p. 945, (2020), doi: 10.22219/repositor.v2i7.973. [Google Scholar]
- B. E. Adiana, I. Soesanti, and A. E. Permanasari, J. Terap. Teknol. Inf., Vol. 2, No. 1, pp. 23–32, (2018), doi: 10.21460/jutei.2018.21.76. [Google Scholar]
- K. Z. Wijaya, A. Djunaidi, and F. Mahananto, J. Tek. ITS, Vol. 10, No. 2, (2021), doi: 10.12962/j23373539.v10i2.67707. [Google Scholar]
- W. M. Kifti and W. Swaradana, J. Sci. Soc. Res., Vol. 3, No. 1, pp. 57–63, (2020). [Google Scholar]
- N. Puspitasari, J. A. Widians, and N. B. Setiawan, J. Teknol. dan Sist. Komput., Vol. 8, No. 2, pp. 78–83, (2020), doi: 10.14710/jtsiskom.8.2.2020.78-83. [CrossRef] [Google Scholar]
- F. Marisa, S. S. S. Ahmad, Z. I. M. Yusof, Fachrudin, and T. M. A. Aziz, Int. J. Integr. Eng., Vol. 11, No. 3, pp. 169–180, (2019), doi: 10.30880/ijie.2019.11.03.018. [CrossRef] [Google Scholar]
- C. A. Sugianto, A. H. Rahayu, and A. Gusman, J. Inf. Technol., Vol. 2, No. 2, pp. 39–44, (2020), doi: 10.47292/joint.v2i2.30. [Google Scholar]
- Z. Wu, L. Jin, J. Zhao, L. Jing, and L. Chen, Comput. Intell. Neurosci., Vol. 2022, (2022), doi: 10.1155/2022/9930613. [Google Scholar]
- M. Aryuni, E. Didik Madyatmadja, and E. Miranda, “Customer Segmentation in XYZ Bank Using K-Means and K-Medoids Clustering, ” in Proc. 2018 Int. Conf. Inf. Manag. Technol. ICIMTech 2018, No. September 2018, pp. 412–416, (2018), doi: 10.1109/ICIMTech.2018.8528086. [Google Scholar]
- I. Kamila, U. Khairunnisa, and M. Mustakim, J. Ilm. Rekayasa dan Manaj. Sist. Inf., Vol. 5, No. 1, p. 119, (2019), doi: 10.24014/rmsi.v5i1.7381. [Google Scholar]
- A. Wibowo and A. R. Handoko, J. Nas. Teknol. dan Sist. Inf., Vol. 5, No. 1, pp. 17–24, (2019). [Google Scholar]
- E. Zuccarelli, “Performance Metrics in Machine Learning — Part 3: Clustering, ” Towards Data Science, (2021). [Google Scholar]
- K. J. Wong, “7 Evaluation Metrics for Clustering Algorithms, ” Towards Data Science, (2022). [Google Scholar]
- R. W. Sembiring Brahmana, F. A. Mohammed, and K. Chairuang, J. Ilm. Teknol. Inf., Vol. 11, No. 1, p. 32, (2020), doi: 10.24843/lkjiti.2020.v11.i01.p04. [Google Scholar]
- A. Sheshasaayee and L. Logeshwari, “Implementation of Clustering Technique Based Rfm Analysis, ” in 2018 2nd Int. Conf. Trends Electron. Informatics, no. Icoei, pp. 1166–1170, (2018). [Google Scholar]
- A. Panaitescu, “How to calculate the RFM score for each customer, ” Omniconvert, (2023). https://www.omniconvert.com/blog/rfm-score/ [Google Scholar]
- A. Winarta and W. J. Kurniawan, J. Tek. Inform. Kaputama, Vol. 5, No. 1, pp. 113–119, (2021). [Google Scholar]
- N. T. Hartanti, J. Nas. Teknol. dan Sist. Inf., Vol. 6, No. 2, pp. 82–89, (2020), doi: 10.25077/teknosi.v6i2.2020.82-89. [Google Scholar]
- S. Nurlaela, A. Primajaya, and T. N. Padilah, INFORMaTIKa, Vol. 12, No. 2, p. 56, (2020), doi: 10.36723/juri.v12i2.234. [Google Scholar]
- G. B. Kaligis and Y. Sri, “Analisa Perbandingan Algoritma K-Means, K_Medoids, dan X-Means Untuk Pengelompokkan Kinerja Pegawai, ” Vol. 01, pp. 179–193, (2022). [Google Scholar]
- A. Ayu, D. Sulistyawati, and M. Sadikin, “Penerapan Algoritma K Medoids untuk Menentukan Segmentasi Pelanggan, ” Vol. 10, pp. 516–526, (2021). [Google Scholar]
- A. Wibowo and A. R. Handoko, J. Teknol. Inf. dan Ilmu Komput., Vol. 7, No. 3, p. 573, (2020), doi: 10.25126/jtiik.2020702925. [Google Scholar]
- P. R. Fitrayana and D. R. S. Saputro, Prism. Pros. Semin. Nas. Mat., Vol. 5, pp. 721–725, 2022. [Google Scholar]
- Athifaturrofifah, R. Goejantoro, and D. Yuniarti, J. EKSPONENSIAL, Vol. 10, No. 2, pp. 143–152, (2019). [Google Scholar]
- I. W. Septiani, A. C. Fauzan, and M. M. Huda, J. Sist. Komput. dan Inform., Vol. 3, No. 4, p. 556, (2022), doi: 10.30865/json.v3i4.4055. [Google Scholar]
- T. Kansal, S. Bahuguna, V. Singh, and T. Choudhury, “Customer Segmentation using K-means Clustering, ” in Proc. Int. Conf. Comput. Tech. Electron. Mech. Syst. CTEMS 2018, pp. 135–139, (2018), doi: 10.1109/CTEMS.2018.8769171. [Google Scholar]
- S. H. Shihab, S. Afroge, and S. Z. Mishu, “RFM Based Market Segmentation Approach Using Advanced K means and Agglomerative Clustering: A Comparative Study, ” in 2019 Int. Conf. Electr. Comput. Commun. Eng., pp. 1–4, (2019). [Google Scholar]
- K. Amrulloh, “Comparison Between Davies-Bouldin Index and Silhouette Coefficient Evaluation Methods in Retail Store Sales Transaction Data Clusterization Using K-Medoids Algorithm, ” (2022). [Google Scholar]
- D. Barba, “Execution Times in Python, ” Towards Data Science, (2022). https://towardsdatascience.com/execution-times-in-python-ed45ecc1bb4d [Google Scholar]
- N. Fei, Y. Gao, Z. Lu, and T. Xiang, “Z-Score Normalization, Hubness, and Few-Shot Learning, ” in Proc. IEEE Int. Conf. Comput. Vis., pp. 142–151, (2021), doi: 10.1109/ICCV48922.2021.00021. [Google Scholar]
- H. Henderi, IJIIS Int. J. Informatics Inf. Syst., Vol. 4, No. 1, pp. 13–20, (2021), doi: 10.47738/ijiis.v4i1.73. [CrossRef] [Google Scholar]
- S. Kappal, London Journals Press, Vol. 19, No. 4, pp. 39–44, (2019). [Google Scholar]
- Connectif, “What Are RFM Scores and How To Calculate Them, ” Connectif, 2022. [Google Scholar]
- P. Makhija, “RFM analysis for Customer Segmentation, ” CleverTap, 2021. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.